Find the volume of the solid generated by rotating the region bounded by
the graphs of y=(x-1)^2 and y=(x-1)^(1/2) in the first quadrant about the
following lines:
(a) x=-1 and (b) y=-2
2007-02-21 17:33:14 · 2 個解答 · 發問者 ? 3 in 科學 ➔ 數學
為何是這樣積?
2007-02-23 10:06:58 · update #1
其實 此二體積相等
因為它繞著等距離的軸旋轉
(a) π∫01(x+1)2dy
=> π∫01[(√y+1+1)2 - (y2+1+1)2]dy
= π∫01[-y4 - 4y2+y+4√y]dy
= π[-y5/5 - 4/3y3+y2/2+(8/3)√(y3)] |01
= π[-1/5 - 4/3+1/2+8/3]
= 49π/30
(b) π∫12(y+1)2dx
=> π∫12[(√(x-1)+2)2 - ((x-1)2+2)2]dx
= π∫12[-(x-1)4 - 4(x-1)2+(x-1)+4√(x-1)]dx
= π[-(x-1)5/5 - 4/3(x-1)3+(x-1)2/2+(8/3)√((x-1)3)] |12
= π[-1/5 - 4/3+1/2+8/3]
= 49π/30
如果有問題, 請來函討論. 不然, 我可能會錯失你再補充的疑點.
2007-02-21 22:09:03 · answer #1 · answered by JJ 7 · 0⤊ 0⤋
┌──
先求 y = ( x - 1 )² 和 y = ┘x - 1 的交點:
┌──
( x - 1 )² = ┘x - 1
=> ( x - 1 )^4 = x - 1
=> ( x - 1 ) ( ( x - 1 )^3 - 1 ) = 0
=> x = 1, 2
=> y = 0, 1
(a) 使用圓盤法: ( 附圖:http://homelf.kimo.com.tw/exaomicron/image25.gif )
以 S 表示積分符號, Pi 表示圓周率
1 ┌─
S Pi ( ( ┘ y + 2 )² - ( y² + 2 )² ) dy
0
1 ┌─
= Pi S ( y + 4 ┘ y + 4 - y^4 - 4y² - 4 ) dy
0
1 ┌─
= Pi S ( - y^4 - 4y² + y + 4 ┘ y ) dy
0
1 4 1 2 │1
= Pi ( - ─ y^5 - ─ y^3 + ─ y² + 4 * ─ y^(3/2) )│
5 3 2 3 │0
- 6 - 40 + 15 + 80
= Pi ───────────────
30
49
= ── Pi
30
(b) 使用圓柱殼法: ( 附圖:http://homelf.kimo.com.tw/exaomicron/image26.gif )
1 ┌─
S [ 2 Pi ( y + 2 ) ] ( ┘ y - y² ) dy
0
1 ┌─
= 2 Pi S ( y^(3/2) - y^3 + 2 ┘ y - 2y² ) dy
0
2 1 2 2 │1
= 2 Pi ( ─ y^(5/2) - ─ y^4 + 2 * ─ y^(3/2) - ─ y^3 )│
5 4 3 3 │0
24 - 15 + 80 - 40
= 2 Pi ─────────────
60
49
= ── Pi
30
可自行試試看 (a) 用圓柱殼法 ( 附圖:http://homelf.kimo.com.tw/exaomicron/image23.gif )
(b) 用圓盤法 ( 附圖:http://homelf.kimo.com.tw/exaomicron/image24.gif )
不過 (a) 用圓柱殼法時,計算會較繁雜。
2007-02-26 18:56:41 · answer #2 · answered by 翔 4 · 0⤊ 0⤋