Find ∫∫∫zdV, where D is the region bounded by the surface
D
36x^2+9y^2+4z^2=36 and 36x^2+9y^2-4z^2=0 with z>0.
我是想用ρ ψθ來解啦...可是解不出來@@請各位幫幫忙囉!
2007-01-12 04:55:07 · 1 個解答 · 發問者 ‧最愛寶貝‧ 1 in 科學 ➔ 數學
SSS zdV
D
S是積分符號,想用散度定理來解,不過找不到範圍
2007-01-12 04:56:58 · update #1
∫ ∫ ∫ zdV, where D is the region bounded by the surface
D
2007-01-13 12:18:35 · update #2
by the surface
36x^2 9y^2 4z^2=36 and 36x^2 9y^2-4z^2=0 with z>0.
2007-01-13 12:19:25 · update #3
概念:先把橢圓變成圓,再用 spherical coordinate。
變數變換:
┌ x = w
│ y = 2u
└ z = 3v
所以
┌ 36 x² + 9 y² + 4 z² = 36
└ 36 x² + 9 y² - 4 z² = 0 with z > 0
<=> ┌ w² + u² + v² = 1
└ w² + u² - v² = 0 with v > 0
<=> ┌ w² + u² + v² = 1
│ ┌────
└ v = ┘ w² + u²
<=> 以 spherical coordinate 表示 ( Pi 代表圓周率 ) :
rho : 0 ~ 1 phi : 0 ~ Pi / 4 theta : 0 ~ 2 Pi
附圖 : http://homelf.kimo.com.tw/exaomicron/image19.gif
以 S 代表積分符號。
S S S z dV
D
= S S S 3 v * 6 dV ( D ' 是變數變換後的區域,6 是 Jacobian matrix 的絕對值 )
D '
2 Pi Pi / 4 1
= 18 S S S p cos(s) ( p² sin(s) ) dp ds dt ( spherical coordinate )
0 0 0
└> 以 p, s, t 代替 rho, phi, theta,因為會出現亂碼
1 Pi / 4 2 Pi
= 18 ( S p^3 dp ) ( S cos(s) sin(s) ds ) ( S 1 dt )
0 0 0
1 │1 1 │Pi / 4 │2 Pi
= 18 ( ─ p^4│ ) ( ─ sin²(s)│ ) ( t│ )
4 │0 2 │0 │0
1 1
= 18 ( ─ ) ( ─ ) ( 2 Pi )
4 4
9
= ─ Pi
4
2007-01-13 22:11:50 · answer #1 · answered by 翔 4 · 0⤊ 0⤋