English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
所有分類

Find ∫∫∫zdV, where D is the region bounded by the surface
D

36x^2+9y^2+4z^2=36 and 36x^2+9y^2-4z^2=0 with z>0.

我是想用ρ ψθ來解啦...可是解不出來@@請各位幫幫忙囉!

2007-01-12 04:55:07 · 1 個解答 · 發問者 ‧最愛寶貝‧ 1 in 科學 數學

SSS zdV
D

S是積分符號,想用散度定理來解,不過找不到範圍

2007-01-12 04:56:58 · update #1

∫ ∫ ∫ zdV, where D is the region bounded by the surface
D

2007-01-13 12:18:35 · update #2

by the surface

36x^2 9y^2 4z^2=36 and 36x^2 9y^2-4z^2=0 with z>0.

2007-01-13 12:19:25 · update #3

1 個解答

概念:先把橢圓變成圓,再用 spherical coordinate。

變數變換:
      ┌ x = w
      │ y = 2u
      └ z = 3v

所以
       ┌ 36 x² + 9 y² + 4 z² = 36
       └ 36 x² + 9 y² - 4 z² = 0 with z > 0

     <=> ┌ w² + u² + v² = 1
          └ w² + u² - v² = 0 with v > 0

     <=> ┌ w² + u² + v² = 1
          │       ┌────
          └ v = ┘ w² + u²

     <=> 以 spherical coordinate 表示 ( Pi 代表圓周率 ) :
         rho : 0 ~ 1  phi : 0 ~ Pi / 4  theta : 0 ~ 2 Pi

附圖 : http://homelf.kimo.com.tw/exaomicron/image19.gif

以 S 代表積分符號。

    S S S z dV
       D

  = S S S 3 v * 6 dV  ( D ' 是變數變換後的區域,6 是 Jacobian matrix 的絕對值 )
     D '


     2 Pi Pi / 4 1
  = 18 S  S  S  p cos(s) ( p² sin(s) ) dp ds dt  ( spherical coordinate )
        0  0   0

     └> 以 p, s, t 代替 rho, phi, theta,因為會出現亂碼


          1          Pi / 4          2 Pi
  = 18 ( S p^3 dp ) ( S cos(s) sin(s) ds ) ( S 1 dt )
          0          0             0


        1  │1     1    │Pi / 4   │2 Pi
  = 18 ( ─ p^4│  ) ( ─ sin²(s)│    ) ( t│  )
        4  │0     2    │0    │0


        1    1
  = 18 ( ─ ) ( ─ ) ( 2 Pi )
        4    4


      9
  = ─ Pi
      4

2007-01-13 22:11:50 · answer #1 · answered by 4 · 0 0

fedest.com, questions and answers