English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
所有分類

1.方程式2x^4-9x^3+qx+r=0有三重根2,則序組(p,q,r)=?

2.已知方程式2x^3-13x^2-26x+k=0的三實根成等比數列,求k=?

3.設f(x)=x^4+x^3+^2+ax+b,a,b屬於Q且f(2分之根號5 - 1)= 0,則a+b=?

4.已知一個有理係數方程式有一根為根號3 - i,求此最低次有理係數方程式=?

5.x^4-x^3-17x^2+32x+30=0有一根3-1,試求其他的根為____

6.方程式6x^4+5x^3+3x^2-3x-2=0,求
(1)有理根為何?
(2)其餘的根為何?



真的不會...可以的話詳細一點謝謝><

2007-01-03 18:01:24 · 2 個解答 · 發問者 Mike 1 in 科學 數學

抱歉= =...
1.方程式2x^4-9x^3 qx r=0有三重根2,則序組(p,q,r)=?
應該是
1.方程式2x^4-9x^3 px^2 qx r=0有三重根2,則序組(p,q,r)=?
才對

2007-01-04 16:48:48 · update #1

2 個解答

(1)因少了二次項,故猜測原方程式為2x4-9x3+px2+qx+r=0
因有三重根2 故原方程式可分解成
(x-2)3(2x-a)=0 => 展開得
2x4 - (12+a)x3+(24+6a)x2-(16+12a)x+8a=0
比較係數 可得 12+a =9 => a = -3
得 原方程式為2x4 - 9x3+6x2+20x-24=0
得(p,q,r) = (6,20,-24)

(2)設三實根為: a, ar , ar2
原方程式為 x3-13/2x2-13x+k/2=0

(a+ar+ar2) = 13/2
a2r + a2r2 + a2r3 = -13 => ar(a + ar + ar2) = -13
a * ar * ar2 = -k/2 => (ar)3 = -k / 2
可得 ar = -2
得 k = 16

(3) 假設原f(x)函數為f(x) = x4+x3+x2+ax+b
(5(1/2) / 2) -1 為方程式 x4+x3+x2+ax+b =0 之解
x = [(5(1/2) / 2) -1] => (x+1) =(5^(1/2) / 2) => (2x+2)2 = 5 =>
4x2 + 8x+ 4 = 5 => 4x2 + 8x - 1 = 0
(4x2 + 8x - 1)‧(1/4 x2 +cx -b) = 0
2 + 4c = 1 => c = -1/4
-1/4 +8c -4b = 1 => b = -13/16
-c -8b = a => a = 1/4 + 13/2 => 27/4
a+b = 95/16


(4)
x=3(1/2) - i => i = 3(1/2)-x => -1 = 3- 2 * 3(1/2)x+x2
x2- 2 * 3(1/2)x+ 4 = 0
因為有理係數方程式
故必存在另一因式(x2 + 2 * 3(1/2)x+ 4)
(x2- 2 * 3(1/2)x+ 4)(x2 + 2 * 3(1/2)x+ 4) =0
得 x4 - 4x2 + 16 = 0

(5)
因有一根3-i 必有一根3+i
可分解原方程式得(x2-6x+10)(x2+5x+3)=0
x2+5x+3=0之解為 (-5+13(1/2))/2 , (-5-13(1/2))/2
故另外三根為3+i , (-5+13(1/2))/2 , (-5-13(1/2))/2

(6)
原方程式因式分解為(3x-2)(2x3+3x2+3x+1)=0
=> (3x-2)(2x+1)(x2+x+1)=0
得有理根為2/3, -1/2
虛根 (-1+3(1/2)i) / 2 , (-1+3(1/2)i) / 2

2007-01-04 11:09:18 · answer #1 · answered by ALEXLEE 5 · 0 0

題目有錯: 2x4-px3+qx+r=0
有三重根 2, => (x-2)3
原方程式為四次 => 2x4-px3+qx+r = (x-2)3 (2x+c) (因為四次方係數為 2)
展開: 2x4-px3+qx+r = 2x4+(c-12)x3+(24-6c)x2+(12c-16)x-8c
x2: 0 = 24-6c => c=4
x3: -p = c-12 = -8 => p = 8
x : q = 12c-16 = 32
x0: r = -8c = -32
(p,q,r) = (8, 32, -32)
2. 三實根成等比 => 設三實根為 a/r, a, ar (r 為公比)
2x3-13x2-26x+k = 2(x - a/r)(x - a)(x - ar)
展開: 2x3-13x2-26x+k = 2x3- 2(a/r + a + ar)x2 + 2a(a/r + a + ar)x - 2a3
x2: -13 = - 2(a/r + a + ar) => 2(a/r + a + ar) = 13
x : -26 = 2a(a/r + a + ar) = a*13 => a = -2
x0: k = -2a3 = 16
3. 題目有錯: f(x)=x4+x3+x2+ax+b
f( (√5 - 1)/2 ) = 0, x = (√5 - 1)/2 為一根
因為 a, b屬於Q, 必有另一根 (-√5 - 1)/2 (有理根成雙)
[x - (√5 - 1)/2][x - (-√5 - 1)/2] = x2+ x - 1
f(x) = x2(x2+ x - 1) + (2x2+ ax + b)
所以 2x2+ ax + b = c(x2+ x - 1)
=> c = 2, a = 2, b = -2
=> a+b = 0
4. x = √3 - i
=> (x- √3)2 = (-i)2 = -1
=> x2 -2√3x +3 = -1
=> (x2 + 4)2 = (2√3x)2
=> x4 + 8x2 + 16 = 12x2
=> x4 - 4x2 + 16 = 0
5. 題目有錯: 有一根3- i ...(1)
虛根成雙 => 另一根3+ i ...(2)
有因式 [x - (3-i)][x - (3+i)] = x2 - 6x + 10
用除法 => x4-x3-17x2+32x+30 = (x2 - 6x + 10)(x2 + 5x + 3)
=> x2 + 5x + 3 的兩根為 (-5+√3)/2, (-5-√3)/2 ... (3)(4)
6. 6x4+5x3+3x2-3x-2
= (6x4+6x3+6x2) + (-x3-x2-x) + (-2x2-2x-2)
= (x2+x+1)(6x2-x-2)
= (x2+x+1)(3x-2)(2x+1)
所以有理根為 2/3, -1/2
其餘 兩根為 (-1+√3i)/2, (-1-√3i)/2
附記: 既然表明有兩有理根, 我們必可從"最高次項" 與 "常數項"係數的因數來測試. 祇是要花點時間.
同理, 既然有兩有理根, 必有一個二次有理係數因式.
當然, 因式分解也是要花點時間. 再加上你的功力了.
如果有問題, 請來函討論. 不然, 我可能會錯失你再補充的疑點.

2007-01-05 04:20:47 補充:
題目有錯: 2x^4-9x^3+px^2+qx+r=0
有三重根 2, => (x-2)^3
原方程式為四次 => 2x^4-9x^3+px^2+qx+r = (x-2)^3 (2x+c) (因為四次方係數為 2)
展開: 2x^4-9x^3+px^2+qx+r = 2x^4+(c-12)x^3+(24-6c)x^2+(12c-16)x-8c
x^3: -9 = c-12 => c = 3
x^2: p = 24-6c => p= 6
x : q = 12c-16 = 20
x^0: r = -8c = -24
(p,q,r) = (6, 20, -24)

2007-01-05 04:20:58 補充:
5. 最後三行亂掉了, 重打. 也同時更正最後的答案.
有因式 [x - (3-i)][x - (3+i)] = x^2 - 6x +10
用除法 => x^4-x^3-17x^2+32x+30 = (x^2 - 6x + 10)(x^2 + 5x + 3)
=> x^2 + 5x +3 的兩根為 (-5+根號13)/2, (-5-根號13)/2 ... (3)(4)

2007-01-04 10:36:12 · answer #2 · answered by JJ 7 · 0 0

fedest.com, questions and answers