已知x^3-x^2+2x-3=0 之三根為 α、β、γ
現在要求以1/α^2、1/β^2、1/γ^2 為三根之方程式?
可是我現在一直求不出α^2β^2+β^2γ^2+γ^2α^2等於多少,有請專家解答。
2006-12-31 05:46:51 · 2 個解答 · 發問者 陌生的過客 2 in 科學 ➔ 數學
α、β、γ 顯示不出來,那就改成a、b、c吧!
2006-12-31 05:51:18 · update #1
(x-a)(x-b)(x-c) = x3 - (a+b+c)x2 + (ab+ac+bc)x - abc = x3 - x2 + 2x - 3
=> a+b+c = 1, ab+ac+bc = 2, abc = 3
=> a2+b2+c2 = (a+b+c)2 - 2(ab+ac+bc) = -3
(x-1/a2)(x-1/b2)(x-1/c2) = x3 - (1/a2+1/b2+1/c2)x2 + [1/(a2b2)+1/(a2c2)+1/(b2c2)]x - 1/(a2b2c2)
1/a2+1/b2+1/c2 = (a2b2+a2c2+b2c2)/(a2b2c2) = [(ab+ac+bc)2 - 2abc(a+b+c)]/(a2b2c2) = (4 - 2*3*1)/9 = -2/9
1/(a2b2)+1/(a2c2)+1/(b2c2) = (a2+b2+c2)/(a2b2c2) = -3/9 = -1/3
所以新方程式 為 x3 + (2/9)x2 - (1/3)x - 1/9
如果有問題, 請來函討論. 不然, 我可能會錯失你再補充的疑點.
2006-12-31 08:28:13 · answer #1 · answered by JJ 7 · 0⤊ 0⤋
1/a^2+1/b^2+1/c^2=b^2c^2+a^2b^2+c^2a^2/a^2b^2c^2
(ab+bc+ac)^2=a^2b^2+b^2c^2+a^2c^2+2abc(a+b+c)
2^2=a^2b^2+b^2c^2+a^2c^2+2*3*1
令a^2b^2+b^2c^2+c^2a^2=A
4=A+6
A=-2 [可能是因為是虛根]
答案=-2/9
2006-12-31 06:52:03 · answer #2 · answered by Anonymous · 0⤊ 0⤋