1.已知一直立圓錐底面半徑為R高度為h,求其最大內接圓柱之體積為何?
2.已知一半徑為R支球體,其內接最大援助的體積為球體的幾倍?
3.求函數f(x)=(x+1)^2(x-2)^3之極大值極小值
請幫忙......謝謝
2006-12-25 16:37:55 · 4 個解答 · 發問者 Anonymous in 科學 ➔ 數學
1.
將圓錐自頂點向下垂直剖開.
圓錐剖面為一底 2R高 h之三角形.
內接圓柱之剖面為一 2 r x ho 之長方形.
其相似比例關係如左: (h – ho) / h = r / R
ho = h – rh/R
內接圓柱之體積 V = πr2ho = πr2 (h – rh/R) = πh(r2 – r3 / R)
dV/dr =πh(2r – 3r2 / R) -- r = 2R/3 有極值
最大內接圓柱之體積 = 4πhR2 / 27
2.
通過球心剖開, 內接圓柱之剖面為一 2 r x h 之長方形,
r2 = R2 – h2 / 4
內接圓柱之體積 V = πr2h = π(hR2 – h3 / 4)
dV/dh =π(R2 – 3h2 / 4) h = 2R(√3) / 3 有極值
最大內接圓柱之體積 = 4πR3(√3) / 9
3.求函數f(x)=(x+1)^2(x-2)^3之極大值極小值
f’(x) = 2(x+1)(x-2) 3 + 3(x+1) 2 (x-2) 2
= (5x – 1) (x+1)(x-2) 2
f’(1/5) = f’(- 1) = f’(2) = 0
f ”(x) = 2(x-2)3 + 12(x+1)(x-2)2 + 6(x+1)2(x-2)
= 2(10x2- 4x+5)(x- 2)
f ”(1/5) = - 414/25 < 0 相對極大值在f (1/5) = - 8728 / 3125
f ”(- 1) = - 114 < 0 相對極大值在f (- 1) = 0
f ”(2) = 0 反曲點 f(2) = 0
2006-12-26 06:14:46 · answer #1 · answered by 光弟 7 · 0⤊ 0⤋
不用微積分的方法才是最快的方法。
2007-01-01 03:51:20 · answer #2 · answered by ? 6 · 0⤊ 0⤋
(一)
設內接圓柱的半徑為X,高為h-Y
(1) 利用三角形相似的原理
得Y/X = h-Y/R-X................(1)
解得 Y = hX/R 代入(2)
(2) 內接圓柱體積為
V(X) = 拍 X^2 (h-Y)………….(2)
= h拍(R-X) X^2 / R…….(3)
V’(X) = h拍 (-3X^2+2XR) / R =0
解得X=2R/3 or 0 (不合理)
V’’(X) = h拍 (-6X+2R) / R
…..以X=2R/3代入,V’’(X)<0 有最大值
將X=2R/3 代入(3)式
求得V(X) = 4拍R^2 h / 27 #
(二)
設內接圓柱的半徑為(R^2-X^2)^1/2,高為2X
(1) 內接圓柱體積為
V(X) = 拍 [(R^2-X^2)^1/2]^2 *2X………….(1)
= 拍 (R^2-X^2) *2X
V’(X) = 拍 (2R^2-6X^2) = 0
解得X=R(1/3) ^1/2
V’’(X) = 拍 (-12X)
…..以X= R(1/3)^ 1/2代入,V’’(X)<0 有最大值
將X= R(1/3)^ 1/2 代入(1)式
求得V(X) = 拍R^3*(4/3) *(1/3)^ 1/2
(2) 球體體積為 拍R^3*(4/3)
內接圓柱體積為球體體積的(1/3)^ 1/2 倍 #
(三)
f(x) = (x+1)^2(x-2)^3
f’(x) = 2(x+1)(x-2)^3+3(x+1)^2(x-2)^2
= (x+1)(x-2)^2 (5x-1)
f(-1) = 0 有極大值
f(1/5) = - 26244/3125 有極小值
2006-12-26 21:35:57 補充:
&hellip 是點點點
&rsquo 是一階微分
’’ 是二階微分
2006-12-26 16:32:51 · answer #3 · answered by ? 2 · 0⤊ 0⤋
http://s121.photobucket.com/albums/o240/jliawtw/?action=view¤t=volumn.jpg
1. 依題意 DC= R, AD = h. 令 圓柱半徑 DE = r, 圓柱高 EF = y
則 CE:CD = EF:AD
=> (R-r):R = y:h
=> y = h(R-r)/R
圓柱體積 V = 拍*r*r*y
= h拍/R*(R-r)*r^2
= h拍/R*(R*r^2 - r^3)
V' = h拍/R*(2R*r - 3r^2)
V' = 0, r = 0 or 2R/3
V''(2R/3) < 0 => 極大值
y = h/3
圓柱體積 V = 拍*r*r*y = 4拍*(R^2)*h/27
2. 令球心為原點 O, OA 為其半徑, 則 OA= R.
令 圓柱半徑 OB = r, 半圓柱高 PB = h
則 r^2 + h^2 = R^2 => h = 根號(R^2 - r^2)
圓柱體積 V = 拍*r*r*2h
= 2拍*(r^2)*[根號(R^2 - r^2)]
= 2拍*[根號((R^2)(r^4) - r^6)]
V' = 拍*[(R^2)4(r^3) - 6r^5)]/[根號((R^2)(r^4) - r^6)]
V' = 0, r = 0 or +/- 根號(2/3)*R (負的不合題意)
V''(根號(2/3)*R) < 0 => 極大值
h = 根號(1/3)*R
圓柱體積 V = 拍*r*r*2h = 4拍*(R^3)*根號(1/3)/3
球體積 4拍*(R^3)/3
圓柱體積 : 球體積 = 根號(1/3)
3. f(x)=(x+1)^2(x-2)^3
f'(x) = (x+1)(x-2)^2(5x-1) = (5x^2+4x-1)(x-2)^2
f'(x) = 0 => x = -1, 2, 1/5
f''(-1) < 0 => 極大值 f(-1) = 0
f''(2) = 0 => 反曲點
f''(1/5) > 0 => 極小值 f(1/5) = -(6^2)(9^3)/(5^5)
2006-12-26 06:48:37 · answer #4 · answered by JJ 7 · 0⤊ 0⤋