Let f:(0,1)->R be a function defined by f(x)=Σn=0∞[xn/(n+1)],0
2006-11-29
15:46:23
·
3 個解答
·
發問者
?
7
in
科學
➔ 數學
Note that (By M-test)f(x) = Σ_[0,oo] [(x^n)/(n+1)] uniformly on [0,δ] for 0<δ<1∫_[0,δ] f(x) dx = ∫_[0,δ] {Σ_[0,oo] [(x^n)/(n+1)]} dx= Σ_[0,oo] {∫_[0,δ] [(x^n)/(n+1)] dx}= Σ_[0,oo] [δ^(n+1)]/(n+1)^2Define g(δ) = Σ_[0,oo] [δ^(n+1)]/(n+1)^2 on (0,1)Since Σ_[0,oo] 1/(n+1)^2 converges, so by Abel's theorem we havelim(δ->1-) g(δ) = g(1) = Σ_[0,oo] 1/(n+1)^2 = (π^2)/6lim(δ->1-) g(δ) = lim(δ->1-) ∫_[0,δ] f(x) dx = ∫_[0,1] f(x) dx(Note that ∫_[0,1] f(x) dx is an improper integal)Q.E.D.
2006-11-30 00:04:09 補充:
無窮級數不能逐項積分
除非它均勻收斂
2006-11-29 18:32:27 · answer #1 · answered by L 7 · 0⤊ 0⤋
答案是π^2/6沒錯,只要把如何算到π^2/6的式子Po上來就可以了
2006-11-30 00:15:19 補充:
天峨說的沒錯
2006-11-29 17:57:16 · answer #2 · answered by ? 7 · 0⤊ 0⤋
x的n次方/(n+1) 的積分不就是 X的n+1次方無限多的一減掉無限多個零 所以是無限大吧>"<
2006-11-29 17:27:11 · answer #3 · answered by ? 5 · 0⤊ 0⤋