ABC 是等邊三角形,邊長為6。P、Q
分別是AB、AC 上的點,R、S 是BC 上的
點,使得PQRS 為正方形。求PQRS 的面
積,答案準確至最接近整數。
2006-11-19 19:35:42 · 4 個解答 · 發問者 hiu tung 1 in 科學 ➔ 數學
http://www.puichingcentre.edu.hk/pcimc/5th/questionandanswer/heat_3.pdf
第13題
2006-11-19 19:36:46 · update #1
Let the side of the square be L.
Notice that , after cutting the square out, triangle ARS is equilateral with side equal to L. Hence, height of triangle ARS is {sqrt(3) x L / 2 } . Also, notice that the height of original triangle ABC is { height of ARS + L }. We will then obtain the following equation:
{sqrt(3) x L / 2 } + L = sqrt(3) x 6 / 2
Hence, L = sqrt(3) x 3 / { [ sqrt(3) /2 ]+ 1 } = 12 x sqrt(3) - 18
Now, area of the sqare = L^2 = 432 - 432 x sqrt(3) +324 = 7.75 = apprx. 8
2006-11-20 07:30:45 · answer #1 · answered by 貓朋 5 · 0⤊ 0⤋
我們要首先劃一條由A垂直於BC的垂直線,而這條線與PQ線相交於M,而與BC線相交於N
Let L be the length of the square
AM=AN-L
=6cos30 - L
我們現在考慮三角形APM
因為PM=AM tan30
PM=L/2
therefore
L/2=AM tan30
L/2 = (6 cos30-L)tan30
L/2 = (3 √3-L)(1/√3)
L(1/2+1/√3) = 3
2.232051L=3
therefore L = 3/2.232051=1.34405531
PQRS的面積=LxL 大約等於 2(答案至最接整數)
2006-11-20 06:10:51 · answer #2 · answered by HaHa 7 · 0⤊ 0⤋
首先,三角形ABC的邊長係6。
三角形ABC的高是等於
=(6^2 - 3^2) ( )括弧入面係開方
=(27) ( )括弧入面係開方
三角ABC的面積
= 3 x (27) / 2 ( )括弧入面係開方
設正方形的邊長係 y
梯形PQCB的高 = y
梯形PQCB的面積
{[y + 6] x y } / 2
= [y^2 + 6y] / 2
三角形APQ的面積
= {y x [(27) - y]} / 2 ( )括弧入面係開方
= [(27)y - y^2] / 2 ( )括弧入面係開方
三角形ABC的面積 = 三角形APQ的面積 + 梯形PQCB的面積
3 x (27) / 2 = [(27)y - y^2] / 2 + [y^2 + 6y] / 2 ( )括弧入面係開方
3 x (27) = [(27)y - y^2] + [y^2 + 6y] ( )括弧入面係開方
3 x (27) = (27)y + 6y ( )括弧入面係開方
3 x (27) = [(27) + 6]y ( )括弧入面係開方
y = [3 x (27)] / [(27) + 6] ( )括弧入面係開方
正方形PQRS的面積 = y^2
因此
正方形PQRS的面積
={[3 x (27)] / [(27) + 6]}^2
= 1.93851278256125
= 2 (最接近的整數)
2006-11-19 20:16:31 · answer #3 · answered by Ho 3 · 0⤊ 0⤋
答案應該係=3x3平方[單位]
2006-11-19 19:42:47 · answer #4 · answered by ? 5 · 0⤊ 0⤋