5,10,15,20,25,30....
general term:5+5(n-1)
對嗎??
1/1,1/2,1/3,1/4,1/5,1/6......
general term=??
1,1,2,3,5,8,13,21,34,55,89......
general term=??
2006-10-22 09:24:04 · 3 個解答 · 發問者 My name is...... 7 in 科學 ➔ 數學
1.
Your deduction is correct.
But you can further simplifly it as :
5 + 5( n - 1)
= 5 + 5n - 5
= 5n
2.
1 / 1 , 1 / 2 , 1 / 3 , ...
General term = 1 / n
3.
This is 斐波那契數列
It is a very famous sequence in Mathematics.
The general term is
圖片參考:http://upload.wikimedia.org/math/f/c/6/fc603718922bb67e9b0e304080eb937d.png
Quite difficult...
There are also a few more expressions of the general term like these :
圖片參考:http://upload.wikimedia.org/math/9/b/0/9b08722bd58742ce44a6486344176866.png
圖片參考:http://upload.wikimedia.org/math/c/9/3/c9394f393bab2168b0a5fa696783026d.png
圖片參考:http://upload.wikimedia.org/math/5/3/d/53dbfe657cc258b3519951e19dce8fb2.png
2006-10-22 18:40:51 · answer #1 · answered by J 7 · 0⤊ 0⤋
5,10,15,20,25,30....中
第n個term 是5的第n個倍數
即是5n
如果你說general term=5+5(n-1)不是不行
5+5(n-1)=5+5n-5=5n
只是5n是最簡單的寫法
寫5+5(n-1)會增加了麻煩
1/1,1/2,1/3,1/4,1/5,1/6......
denominator由1不斷增加
即是第n個term是1/n
其general term為1/n
1,1,2,3,5,8,13,21,34,55,89......
是著名的斐波那契數列(Fibonacci numbers)
有general term
但如何求出,由於太過複雜
請見
http://zh.wikipedia.org/w/index.php?title=%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91%E6%95%B0%E5%88%97&variant=zh-hk
2006-10-22 12:18:57 · answer #2 · answered by 打倒美帝紙老虎 6 · 0⤊ 0⤋
對 wow
2006-10-22 10:08:17 · answer #3 · answered by ? 2 · 0⤊ 0⤋