y''-(4/x)y'+(4/x2)y=x2+1只需求y1.y2....也就是w(y1.y2)的y1.y2....因為我不知怎麼求...謝謝
2006-10-17 17:40:58 · 4 個解答 · 發問者 土撥鼠 1 in 科學 ➔ 數學
請將整題的解法寫出~~~~謝謝^^
2006-10-19 16:58:02 · update #1
需要幫算這題嗎?
2006-10-20 23:04:12 補充:
Problem:Solve following Cauchy - Euler equation y'' - ( 4/x ) y' + ( 4/x2 ) y = x2 + 1sol: 令 y = xm → y' = m xm - 1 y'' = m( m - 1 ) xm - 2 y'' - ( 4/x ) y' + ( 4/x2 ) y = 0 → m( m - 1 ) xm - 2 - 4m xm - 2 + 4xm - 2 = 0 → m( m - 1 ) - 4m + 4 = 0 → m2 - 5m + 4 = 0 ~ 特徵方程式 ( characteristic equation ) → ( m - 1 )( m - 4 ) = 0 → m = 1 , 4 ~ 相異實根 → yh = c1x + c2x4 ~ 齊次解 ( homogenous solution ) 利用參數變異法 ( method of variation parameters ) 求特解 yp。 令 Q(x) = x2 + 1 yp = u1y1 + u2y2 = u1x + u2x4 註 W( y1 , y2 ) =│x x4│= 4x4 - x4 = 3x4 │1 4x3│ u1 =∫( - y2Q/W )dx =∫[ - x4( x2 + 1 )/3x4 ]dx =∫- [ ( x2 + 1 )/3 ]dx = - ( x3/9 ) - ( x/3 ) u2 =∫( y1Q/W )dx =∫[ x( x2 + 1 )/3x4 ]dx = ( 1/3 )∫[ ( 1/x ) + ( 1/x3 ) ]dx = ( 1/3 )[ ln│x│- ( 1/2x2 ) ] yp = u1y1 + u2y2 = - ( x4/9 ) - ( x2/3 ) + ( x4 ln│x│/3 ) - ( x2/6 ) = - ( x4/9 ) - ( x2/2 ) + ( x4 ln│x│/3 ) → yp = - ( x4/9 ) - ( x2/2 ) + ( x4 ln│x│/3 ) ~ 特解 ( particular solution ) 通解 ( general solution ):y = yh + yp → y = c1x + c2x4 - ( x4/9 ) - ( x2/2 ) + ( x4 ln│x│/3 ) #*註: W( y1 , y2 ) 中的 y1、y2 就是我們算出來的齊次解,利用齊次解再代入原方程式測試特解就是參數變異法,當然中間的測試過程我們都會省略,而直接引用數學界〝先賢先烈〞所導出來的結果。* 您可令 u1y1 + u2y2 = u1x + u2x4 或 u1y1 + u2y2 = u1x4+ u2x 都可以,答案都一樣,您可自己試試喔!希望以上回答過程能幫助您。
2006-10-20 19:04:12 · answer #1 · answered by 龍昊 7 · 0⤊ 0⤋
恩~~恩~~
2006-10-20 17:59:19 · answer #2 · answered by 土撥鼠 1 · 0⤊ 0⤋
哇~~泰北高中夜間部喲~~這位教職員工,用學校網路資源來放知識解題的答案,是不是有些許不妥!!
2006-10-19 18:56:05 · answer #3 · answered by 龍斬澐 6 · 0⤊ 0⤋
請參閱下列網址
http://w3.tpsh.tp.edu.tw/ann/
標題:微分方程參考解
2006-10-19 12:01:45 · answer #4 · answered by 巧克力 3 · 0⤊ 0⤋