solve x2y''-5xy'+8y=2(ln|x|)+x3求yp and y(x) ??過程越詳細越好^^Thanks!!
2006-10-15 10:34:14 · 1 個解答 · 發問者 土撥鼠 1 in 科學 ➔ 數學
倒數第5行....
怎麼知道要SET → yp = ( t/4 ) + ( 3/16 ) - e3t
謝謝!!
2006-10-16 08:47:59 · update #1
Problem:Solve Cauchy - Euler equation for x2y'' - 5xy' + 8y = 2 ln│x│+ x3sol: 令 x = et → t = ln│x│ 則:( dy/dx ) = ( dy/dt )( dt/dx ) = ( 1/x )( dy/dt ) ( d2y/dx2 ) = ( d/dx )( 1/x )( dy/dt ) = ( 1/x2 )( d2y/dt2 ) - ( 1/x2 )( dy/dt ) 將以上代換結果代回原題目得到一新 o.d.e. 如下: ( d2y/dt2 ) - 6( dy/dt ) + 8y = 2t + e3t 特徵方程式 ( characteristic equation ):r2 - 6r + 8 = 0 → ( r - 2 )( r - 4 ) = 0 → r = 2 , 4 ~ 相異實根 yh = c1e2t + c2e4t = c1x2 + c2x4 ~ 齊次解 ( homogenous solution ) 利用未定係數法 ( method of undetermined coefficient ) 求特解 yp。 令 yp = At + B + Ce3t → ( dyp/dt ) = A + 3Ce3t ( d2yp/dt ) = 9Ce3t ( d2yp/dt ) - 6( dyp/dt ) + 8yp = 2t + e3t → 8At - 6A + 8B - Ce3t = 2t + e3t 比較係數得:A = ( 1/4 ) - 6A + 8B = 0 → B = 3/16 C = - 1 → yp = ( t/4 ) + ( 3/16 ) - e3t = ( ln│x│/4 ) + ( 3/16 ) - x3 ~ 特解 ( particular solution ) 通解 ( general solution ):y = yh + yp → y = c1x2 + c2x4 + ( ln│x│/4 ) + ( 3/16 ) - x3 #* 希望以上回答能幫助您。
2006-10-17 00:25:21 補充:
版主請看倒數第 13 行,我設 yp,然後將中間比較得到的係數,再代入我設的 yp,就變成倒數第五行的 yp,就這樣而已喔!
2006-10-15 12:10:08 · answer #1 · answered by 龍昊 7 · 0⤊ 0⤋