在三角形ABC中,已知D為AB邊上的一點,且AD=7,BD=5,∠ACD=π/4,∠CDB=3π/8,則三角形ABC的面積為?
2006-06-13 19:58:56 · 4 個解答 · 發問者 加油加油 6 in 科學 ➔ 數學
圖片參考:http://home.pchome.com.tw/net/cloudyma/qid1306061316627.jpg
圖若畫得不夠精準,請見諒。首先用兩倍角公式和正餘弦互換,算一個式子,2sin(5π/8)sin(π/8)=2cos(π/8)sin(π/8)=sin(π/4)=1/√2∠CAD=∠CDB-∠ACD=3π/8-π/4=π/8在△ACD中,應用正弦定理,線段AD/sin(π/4)=線段AC/sin(5π/8)故AC=7*sin(5π/8)/sin(π/4)=7*sin(5π/8)*√2△ABC面積=(1/2)*AB*AC*sin∠CAD=(1/2)*12*[7*sin(5π/8)*√2]*sin(π/8)=21√2*[2*sin(5π/8)*sin(π/8)]=21√2*(1/√2)=21
2006-06-14 22:33:35 · answer #1 · answered by ? 7 · 0⤊ 0⤋
在三角形ABC中,已知D為AB邊上的一點,且AD=7,BD=5,∠ACD=π/4,∠CDB=3π/8,則,∠ADC=5π/8,,∠CAD=π/8,利用正弦定理: AC/(sin5π/8) = 7 /(sinπ/4)==> AC=7(sin5π/8)/(sinπ/4)==> 三角形ABC的面積為(1/2)AB*AC*(sinπ/8) = 6*[7(sin5π/8)/(sinπ/4)]* (sinπ/8) =42*(cosπ/8)*(sinπ/8)/(sinπ/4) = 21*(sinπ/4))/(sinπ/4) = 21
2006-06-13 20:32:36 · answer #2 · answered by popo 6 · 0⤊ 0⤋
易得∠A=π/8在三角形ACD中使用正弦定理CD/sinA=AD/sin∠ACDCD=7*(根號2)*sin(π/8)AB的高就是CD*sin(3π/8)三角形ABC的面積=(1/2)*12*7*(根號2)*sin(π/8)*sin(3π/8)=42*(根號2)*sin(π/8)*cos(π/8)=21
2006-06-13 20:31:38 · answer #3 · answered by ? 7 · 0⤊ 0⤋
答案應為 21*(2-根號2)
因為過程太複雜,不易列出,所以只寫答案,僅供參考。
2006-06-13 20:14:45 · answer #4 · answered by ㄚ MAN 4 · 0⤊ 0⤋