已知 -π/2 < x < π/2
解 sinx + √3cosx小於等於0
2006-05-16 17:39:28 · 3 個解答 · 發問者 小亦 1 in 科學 ➔ 數學
1. sinx + √3cosx
2. =2(1/2sinx + √3/2cosx)
3. =2(cosπ/3 sinx + sinπ/3 cosx)
4. =2( sinx cosπ/3 + cosx sinπ/3 )
5. =2sin(x+π/3)
6. 又因為 -π/2 < x < π/2
所以 -1 < sinx < 1
-1/2 < sin(x+π/3) < 1
-1 < 2sin(x+π/3) < 2
7. 故當 -π/2 < x 小於等於 -π/3 時
sinx + √3cosx小於等於0
2006-05-16 18:03:44 · answer #1 · answered by 188 4 · 0⤊ 0⤋
利用正、餘弦函數的公式:
sinx + √3cosx
=2(1/2sinx + √3/2cosx)
=2(cosπ/3 sinx + sinπ/3 cosx)
=2( sinx cosπ/3 + cosx sinπ/3 )
=2sin(x+π/3)【和角公式】
≦0
∵ -π/2 < x < π/2
∴ -π/6 < x+π/3 < 5π/6
=> -1/2 < sin(x+π/3) < 1
若-1 < 2sin(x+π/3) ≦0
=> -1/2 < sin(x+π/3) ≦0
=> -π/6 < x+π/3 ≦0
=> -π/2 < x ≦ -π/3
解:-π/2 < x ≦ -π/3
2006-05-16 19:16:07 · answer #2 · answered by 美樂羊脂膏 5 · 0⤊ 0⤋
要解什麼?
2006-05-16 17:49:54 · answer #3 · answered by ? 7 · 0⤊ 0⤋