English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
所有分類

設f(x):[0,1]->R為一連續函數,試證:lim∫01f(xn)dx=0n->∞

2006-05-08 21:34:53 · 3 個解答 · 發問者 ? 7 in 科學 數學

不好意思,忘了一個條件:f(0)=0

2006-05-08 22:04:29 · update #1

3 個解答

By Mean Value Theorem for the Integral and f continuous on [0,k] 0<=k<1 we have
lim[∫0 to k] f(x^n)dx=lim f(cn^n)=f(lim cn^n)=f(0)=0 since0<=cn^n<=k^n->0 as n->∞
n->∞.......................... n->∞ ........ n->∞

we know that f is bounded on [0,1], and then the double limit
lim [∫0 to k] f(x^n) dx exist
n->∞ k->1
so that lim[∫0 to k] f(x^n) dx =lim lim [∫0 to k] f(x^n) dx
.......... n->∞......................... n->∞ k->1
=lim lim [∫0 to k] f(x^n) dx=lim 0=0
k->1 n->∞ .......................... k->1
Q.E.D.

2006-05-09 05:30:37 · answer #1 · answered by ? 3 · 0 0

因為剛考過

2006-06-10 17:56:25 · answer #2 · answered by ? 7 · 0 0

如何拿到95年各校碩士班的試題??

2006-06-09 13:35:01 · answer #3 · answered by 瑜珈 1 · 0 0

fedest.com, questions and answers