設3x3+mx2-61x+n可被x2-5x+3整除,則 m+n=?
2005-12-09 08:52:18 · 2 個解答 · 發問者 Frank 7 in 科學 ➔ 數學
3x^3+mx^2-61x+n -) 3x(x^2-5x+3)-------------------------------(m+15)x^2-70x+n=14x^2-70x+42 因為可以整除 =14(x2-5x+3)m+15=14 ;n=42m=-1n=42m+n=41
2005-12-09 08:55:20 · answer #1 · answered by Anonymous · 0⤊ 0⤋
(3x3+mx2-61x+n)÷(x2-5x+3)=3x+(m+15)……〔-70+5(m+15)〕x+〔n-3(m+15)〕因為整除,即餘式為0(x項係數與常數項係數皆為0)即-70+5(m+15)=0……n-3(m+15)=0………由式得:5m+75=70 → m=-1將 m=-1代入式得:n-3×14=0 → n=42故m+n=(-1)+42=41
2005-12-09 09:06:13 · answer #2 · answered by ? 5 · 0⤊ 0⤋