解方程式 (16x 27)2(8x 15)(2x 3) = 7
2005-11-18 16:26:41 · 2 個解答 · 發問者 Frank 7 in 科學 ➔ 數學
(16x + 27)2(8x + 15)(2x + 3) = 7
2005-11-18 16:30:04 · update #1
(16x + 27)²(8x + 15)(2x + 3) = 7
(16x + 27)²(16x ²+ 54x + 45) = 7
(16x + 27)²[(4x + 27/4)² - 9/16] = 7
(16x + 27)²(4x + 27/4)² - 9/16(16x + 27)² = 7
兩邊同×16
(16x + 27)²(16x + 27)² - 9(16x + 27)² = 112
令 A = (16x + 27)²
原式
A² - 9A - 112 = 0
A=16 , -7
<實數根>
16x + 27 = ±4
x= -23/16 , -31/16
<複數根>
16x + 27 = ±√7i
x = (-27 ±√ 7i)/16
2005-11-18 18:55:06 · answer #1 · answered by 妖精 5 · 0⤊ 0⤋
(16x + 27)^2*(8x + 15)*(2x + 3) = 7 乘開後變成4096*x^4+14848*x^3+15040*x^2+3096*x+180=7==>4096*x^4+14848*x^3+15040*x^2+3096*x+173=0這是一元四次方程式我利用計算機程式MATLAB解>> p=[4096,14848,15040,3096,173];>> roots(p)ans = -1.8765 -1.4976 -0.1521 -0.0988得到4個解-----------------------------------乘開我也是用程式解的>> clear>> syms x>> f=(16*x+2)^2 f = (16*x+2)^2 >> a=expand(f) a = 256*x^2+64*x+4>> a*(8*x+15)*(2*x+3) ans = (256*x^2+64*x+4)*(8*x+15)*(2*x+3) >> expand(ans) ans = 4096*x^4+14848*x^3+15040*x^2+3096*x+180 >> ans-7 ans = 4096*x^4+14848*x^3+15040*x^2+3096*x+173
2005-11-18 16:47:59 · answer #2 · answered by Anonymous · 0⤊ 0⤋