方程式: lim f(x + h) - f(x)f'a = h-->0 ---------------- h f(x)= =x³-2x²+3f'(x) =?教我代入還是代入給我看我不要你的答案請教我代入只給我答案 = 沒有解答(非知識+主旨!!)
2005-08-30 17:17:24 · 2 個解答 · 發問者 changchih 7 in 科學 ➔ 數學
f'(x)其實就是f(x)的微分的定義 因此 將f(x)代入f'(x)得
lim f(x+h) - f(x) (x+h)^3-2(x+h)^2+3-(x^3-2x^2+3)
f'(x) = h-->0 ------------------- = --------------------------------------------- =
h h
x^3+3hx^2+3xh^2+h^3-2x^2-4hx-h^2+3-(x^3-2x^2+3)
------------------------------------------------------------------------- =
h
3hx^2+3xh^2+h^3-4hx-h^2
------------------------------------- = 3x^2-4x+(3xh+h^2-h)
h
因為h-->0 => (3xh+h^2-h) -->0
所以f'(x) = 3x^2-4x
2005-08-30 17:31:30 · answer #1 · answered by Anonymous · 0⤊ 0⤋
f'(x)=lim h->0 [f(x+h)-f(x)]/h
f(x)= x³-2x²+3
將方程式帶入即可
=>f'(x)=lim h->0{ [(x+h)³-2(x+h)²+3]-(x³-2x²+3)}/h
=lim h->0{ [(x+h)³-x³]-2[(x+h)²-x²]}/h
=lim h->0{ [3x²h+3xh²]-4hx-h²}/h
=lim h->0{ [3x²+3xh]-4x-h}
( h->0 =>h以0帶入)
=3x²-4x
2005-08-31 07:33:03 · answer #2 · answered by ? 3 · 0⤊ 0⤋