1*2+2*3+3*4+4*5.....+ n*[n+1]=?
是否有較簡單或聰明的方法?
2005-08-23 17:14:28 · 6 個解答 · 發問者 阿格 1 in 科學 ➔ 數學
可以使用sigma公式運算...
sigma[n*(n+1)] = sigma(n平方+n) = sigma(n平方) + sigma(n)
= 1/6 * n(n+1)(2n+1) + 1/2 * (n+1)n
2005-08-23 17:22:15 · answer #1 · answered by Anonymous · 0⤊ 0⤋
.....
什麼 ?
看不懂 = =!
2005-09-01 09:56:59 · answer #2 · answered by Anonymous · 0⤊ 0⤋
用Σ速度會比較快....可是要先了解Σ才行
2005-08-27 20:06:12 · answer #3 · answered by 倒數3秒 3 · 0⤊ 0⤋
因為1*2=1/3(1*2*3-0*1*2)
所以n(n+1)=1/3( n(n+1)(n+2)-(n-1)n(n+1) )
在來
1*2+2*3+3*4+4*5+........+n(n+1)
=1/3(1*2*3-0*1*2)+1/3(2*3*4-1*2*3)+.........+1/3( n(n+1)(n+2)-(n-1)n(n+1) )
=1/3( 1*2*3-0*1*2+2*3*4-1*2*3+3*4*5-2*3*4+.......+ n(n+1)(n+2)-(n-1)n(n+1) )
=1/3( n(n+1)(n+2)-0*1*2)
=3/1n(n+1)(n+2)
就是這樣
而這也是一個公式
公式是:
''一''除以每項項數加一在乘以(最後項加乘一個後面的數-最前項加乘一個前面的數)
就像=1/3( n(n+1)(n+2)-0*1*2)一樣
2005-08-23 18:46:52 · answer #4 · answered by 偉任 2 · 0⤊ 0⤋
Σ[n(n+1)]=Σ(n2+n)=Σn2+Σn=[n(n+1)(2n+1)/6]+[n(n+1)/2]=n(n+1)(2n+4)/6=n(n+1)(n+2)/3證明:n=1時,1*2=1*2*3/3成立假設n=k時成立,1*2+2*3+3*4+4*5.....+ k*(k+1)=k(k+1)(k+2)/3當n=k+1時,1*2+2*3+3*4+4*5.....+ k*(k+1)+(k+1)(k+2)=k(k+1)(k+2)/3+(k+1)(k+2)=k(k+1)(k+2)/3+3(k+1)(k+2)/3=(k+1)(k+2)(k+3)/3得證!
2005-08-23 18:30:01 · answer #5 · answered by ? 7 · 0⤊ 0⤋
sum=0
for i=1 to n
sum=sum+i*(i+1)
next i
print sum
2005-08-23 17:36:34 · answer #6 · answered by 賢情逸致 5 · 0⤊ 0⤋