English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
所有分類

(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1=???(以a^n表示)
^^"有聽老師講過但忘了

2005-06-22 17:07:31 · 2 個解答 · 發問者 Anonymous in 科學 數學

2 個解答

這一題我寫過了..原式可以=[(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1]/2-1
=[(2^2-1)2^2+1)(2^4+1)(2^8+1)(2^16+1)+1]/2-1
=[(2^4-1)(2^4+1)(2^8+1)(2^16+1)+1]/2-1
=[(2^8-1)(2^8+1)(2^16+1)+1]/2-1
=[(2^16-1)(2^16+1)+1]/2-1
=[2^32-1]+1/2-1
=2^32/1
=2^32

2005-06-22 17:12:13 · answer #1 · answered by ? 3 · 0 0

這是求(a+1)(a^2+1)(a^4+1)(a^8+1)(a^16+1)+1嗎?
當a=1時,該式=2*2*2*2*2+1=33
當a≠1時
令X=(a+1)(a^2+1)(a^4+1)(a^8+1)(a^16+1)
則(a-1)X=(a-1)(a+1)(a^2+1)(a^4+1)(a^8+1)(a^16+1)
=(a^2-1)(a^2+1)(a^4+1)(a^8+1)(a^16+1)
=(a^4-1)(a^4+1)(a^8+1)(a^16+1)
=(a^8-1)(a^8+1)(a^16+1)
=(a^16-1)(a^16+1)
=a^32-1
總之就是不斷用平方差公式。
因此X=(a^32-1)/(a-1)
再加1就變(a^32+a-2)/(a-1)
以a=2代入,就是2^32啦!

2005-06-22 17:18:51 · answer #2 · answered by ? 7 · 0 0

fedest.com, questions and answers