a) E (1+n²)/n! = E 1/n! + E n²/n! Supondo que seja para n a partir de 0, temos que E1/n! =e. Além disto, E (n= 0, oo) n²/n! = E (n=1, oo) n²/n = E(n=1, oo) n/(n-1)! = E(n=1, oo) ((n-1)/(n-1)! + 1/(n-1)!) = E(n=2, oo)1/(n-2)! + E(n=1, oo)1/(n-1)! = e + e = 2e.
Logo, E (1+n²)/n! = e + 2e = 3e.
b) Há um erro no enunciado, esta série diverge, pois lim n/(3n-1) =1/3 >0
2007-11-28 04:24:06
·
answer #1
·
answered by Steiner 7
·
0⤊
0⤋
a) an= (1+n²)/n! >0 com
lim_{n-->+inf} a(n+1)/an =
lim_{n-->+inf} [ 1+ (n+1)^2] / (1+n^2) · n!/ (n+1)! =
lim_{n-->+inf} [ 1+ (n+1)^2] / (1+n^2) · 1/ (n+1) = 1·0 = 0 <1
--> Converge
b) Diverge.
an= n/ (3n-1) = 1/3 · (3n)/(3n-1) = 1/3 · [ 1 + 1/(3n-1)]
--> an > 1/3
--> Sn > n/3
--> lim_{n-->+inf} Sn = +inf
Saludos.
2007-11-27 10:44:11
·
answer #2
·
answered by lou h 7
·
0⤊
0⤋