English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
Todas as categorias

a) ∫(8x^2dx)/(x^3 +2)^3

b) ∫3x√(1 -2x^2)dx

Obs: √= raiz quadrada

2007-11-01 00:43:52 · 3 respostas · perguntado por Morena 3 em Ciências e Matemática Matemática

3 respostas

a) x^3+2 = u
du/dx = 3x^2
du = 3x^2dx

∫(8x^2dx)/(x^3 +2)^3 =(8/3) ∫(1/(x^3+2)^3)3x^2dx=

= (8/3) ∫(1/u^3)du = (8/3) [u^-2/-2]= -4/(3u^2) = -4/[3(x^3+2)^2]

b) 1-2x^2 = u
du/dx = -4x
du = -4xdx

∫3x√(1 -2x^2)dx = -(3/4)∫√(1 -2x^2)(-4x)dx =

= -(3/4)∫√udu = -(3/4)(2/3)[u^3/2] = -(1/2)[u^3/2] =
=-(1/2)[(1-2x^2) ^3/2]

2007-11-01 01:53:17 · answer #1 · answered by The Rock 2 · 1 0

a) Faça u = x^3 +2. Então, du = 3x^2dx e nossa integral fica

Int (8/3) u^(-3)du. Conforme sabemos, temos então que

Int (8/3) u^(-3)du = (8/3) *1/(1 + (-3)) u^(1 + (-3)) = -(8/3) * 1/2 u^(-2) = -4/3 (-2) + C. Voltando a x, temos que

∫(8x^2dx)/(x^3 +2)^3 = -4/3 (x^3 + 2)^(-2) + C

b) É similar ao anterior. Faça u = 1 - 2x^2, de modo que du = 4xdx. A integral fica

Int (-3/4) u^(1/2) du = (-3/4) * 2/3 * u^(3/2) = (-1/2) u^(3/2) + C. Voltando a x,

∫3x√(1 -2x^2)dx = (-1/2) (1 - 2x^2)^(3/2) + C

2007-11-01 08:48:46 · answer #2 · answered by Steiner 7 · 1 0

o professor da minha faculdade de matemática resolve.

2007-11-01 07:46:58 · answer #3 · answered by Cesar 2 · 0 0

fedest.com, questions and answers