English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
所有分類

Apply the method of the characteristic equation to find an explicit closed formula for the numbers an that satisfy the recurrence equation
an = 2an-1(n-1在a下面) - an-2(n-2在a下面)
for n>= 2, with the initial values a0 = 4 and a1 = 1.

2007-10-18 02:05:36 · 1 個解答 · 發問者 昱賢 1 in 教育與參考 考試

請問一下 為何公式不是 an = αn = A1*(1)n次方 + A2*(1)n次方??

2007-10-20 02:33:12 · update #1

1 個解答

Using characteristics equation:
Let an=αn 代入, 得到 αn = 2αn-1 - αn-2
除以 αn-2 得 α2 = 2α - 1, 或 (α-1)2 = 0
解為 α = 1, 1 (重根)
所以, an = αn = A1*(1)n n*A2*(1)n [註: * 是乘]
現在, 用已知的起始值來決定 A1 及 A2 到底是多少:
Let n = 0: ao = A1 0 = 4
Let n = 1: a1 = A1 A2 = 1
上面兩式可知 A1 = 4, A2 = -3
所以, 答案為 an = 4 - 3n

2007-10-21 18:45:27 補充:
若上面的特性方程式得α = λ1, λ2 且非重根, 則是
an = αn = A1*(λ1)^n 加 A2*(λ2)^n
若是α = λ重根 (如此題), 則是
an = αn = A1*(λ)^n + A2*(λ)^n
(請見
http://en.wikipedia.org/wiki/Recurrence_relation#Solving_generally)

2007-10-21 18:48:03 補充:
對不起, 補充時打錯了, 應是:
若是α = λ重根 (如此題), 則是
an = αn = A1*(λ)^n + n* A2*(λ)^n

2007-10-18 04:51:35 · answer #1 · answered by Leslie 7 · 0 0

fedest.com, questions and answers