English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
所有分類

Apply the method of the characteristic equation to find an explicit closed formula for the numbers an that satisfy the recurrence equation
an = 2an-1(n-1在a下面) - an-2(n-2在a下面)
for n>= 2, with the initial values a0 = 4 and a1 = 1.

2007-10-18 02:05:22 · 2 個解答 · 發問者 昱賢 1 in 社會與文化 語言

2 個解答

Using characteristics equation:
Let an=αn 代入
得到 αn = 2αn-1 - αn-2
除以 αn-2 得 α2 = 2α - 1, 或 (α-1)2 = 0
解為 α = 1, 1 (重根)
所以, an = αn = A1*(1)n + n*A2*(1)n [註: * 是乘]
現在, 用已知的起始值來決定 A1 及 A2 到底是多少:
Let n = 0: ao = A1 + 0 = 4
Let n = 1: a1 = A1 + A2 = 1
上面兩式可知 A1 = 4, A2 = -3
所以, an = 4 - 3n

2007-10-18 04:44:53 · answer #1 · answered by Leslie 7 · 0 0

這不知是工數還是統計問題...希望我翻的對..

應用特徵方程式的方法來求取an的明確閉合公式,其中an必須要能滿足線性迴歸方程式...

這東西早已經還給老師10幾年了..解答就幫不上忙了

2007-10-18 04:39:49 · answer #2 · answered by 野鶴 5 · 0 0

fedest.com, questions and answers