1+2+3+4+5+6...+99999999999999999999999999999+10000000000000000000000000000
我唔識
2007-03-03 09:21:23 · 8 個解答 · 發問者 無聊 1 in 教育與參考 ➔ 小學及中學教育
1+2+3+4+5+6...+99999999999999999999999999999+10000000000000000000000000000
=(1+10000000000000000000000000000) x 10000000000000000000000000000 / 2
方程式是(第一項+最後的一項) x 項數 / 2
2007-03-03 09:26:07 · answer #1 · answered by 羊咩 2 · 0⤊ 0⤋
我想係
10000000000000000000000000000 X 10000000000000000000000000001
----------------------------------------------------------------------------------------------------------
2
Because 1+2+3+.........+n = n X n+1 over 2
2007-03-05 14:33:46 補充:
-----------2 = /2
2007-03-04 05:42:42 · answer #2 · answered by ? 2 · 0⤊ 0⤋
呢條係奧數
將1+10000000000000000000000000000=10000000000000000000000000001
2+9999999999999999999999999999=10000000000000000000000000001
3+9999999999999999999999999998=10000000000000000000000000001
4+9999999999999999999999999997=10000000000000000000000000001
5+9999999999999999999999999996=10000000000000000000000000001
..................................
10000000000000000000000000000+1=100000000000000000000000000001
係將最頭ga項數同最尾ga項數加埋
再將第二個項數同尾二ga項數加埋
咁樣一路加上去
加哂後
每條式ga答案都係10000000000000000000000000001
而且仲有5000000000000000000000000000條式
最後5000000000000000000000000000x每條式ga答案
就知個答案係ge啦
答案係50000000000000000000000000005000000000000000000000000000
式:5000000000000000000000000000x10000000000000000000000000001
=50000000000000000000000000005000000000000000000000000000
2007-03-03 14:14:49 · answer #3 · answered by Tsoi Wing 2 · 0⤊ 0⤋
其實好簡單,係有一個方程式嫁!
(a) Using the above formula, find
1. 1+2+3+4+5+......100
=(1+100)/2 = (頭項+尾項)/2
=5050
2. 1+2+3+4+5+......200
=(1+200)/2 =(頭項+尾項)/2
=20100
It is given that 1+2+3+4+5+......100
=(頭項+尾項)X項數/2
also=5050
Are you think it is so easy?
2007-03-03 11:26:06 · answer #4 · answered by Rita Ng 2 · 0⤊ 0⤋
1+10000000000000000000000000000) x 10000000000000000000000000000 / 2
2007-03-03 10:38:02 · answer #5 · answered by ? 1 · 0⤊ 0⤋
∵1+2+3+.....99+100 = 5500
∴1+2+3+4+5+6...+99999999999999999999999999999+10000000000000000000000000000
就應該 = 5500000000000000000000000000000000000000000000000000000000
2007-03-03 09:29:27 · answer #6 · answered by Kevin 3 · 0⤊ 0⤋
(1+10000000000000000000000000000) x (10000000000000000000000000000) / 2
=5 x 10^55
2007-03-03 09:27:14 · answer #7 · answered by Cath 2 · 0⤊ 0⤋
1+2+3+4+5+6+.....n=n(n+1)/2
2007-03-03 09:26:56 · answer #8 · answered by 東南西北 7 · 0⤊ 0⤋