方程式 f(X)=|X^2-3X|-X+2=k
有二個相異實根,求k之範圍。
(請列詳解)
2007-02-09 09:36:06 · 2 個解答 · 發問者 足球迷 3 in 教育與參考 ➔ 考試
redragonwu
謝謝你這樣快速解答,你的答案跟我算的一樣,但卻疏忽k的範圍與假設X^2 - 3X > 0 之關係。
歡迎有其他答案者作答
2007-02-09 10:09:42 · update #1
f(x) = |x2-3x| - x + 2 = k
(1) x2 - 3x >= 0 => x(x-3) >= 0 => x <= 0 or x >= 3
去絕對值得
x2 - 3x - x + 2 = k
=> x2 - 4x + (2-k) = 0
=> x = 2 +- √[4 -(2-k)]
因為 x <= 0 or x >= 3
2 + √(2+k) >= 3 or 2 - √(2+k) <= 0 and 2+k > 0 (不可為 0, 會重根)
=> √(2+k) >= 1 or √(2+k) >= 2
=> √(2+k) >= 2
=> 2 + k >= 4
=> k >= 2
(2) x2 - 3x <= 0 => x(x-3) <= 0 => 0 <= x <= 3
去絕對值得
-x2 + 3x - x + 2 = k
=> x2 - 2x + (k-2) = 0
=> x = 1 +- √[1 -(k-2)]
因為 0 <= x <= 3
0 <= 1 - √(3-k) and 1 + √(3-k) <= 3 and 3-k > 0
=> √(3-k) <= 1 or √(3-k) <= 2
=> √(3-k) <= 1
=> 0 < 3-k <= 1
=> 2 <= k < 3
綜合 (1) (2) => 2 <= k < 3
2007-02-10 06:33:04 補充:
如果有問題, 請來函討論. 不然, 我可能會錯失你再補充的疑點.
2007-02-10 01:27:21 · answer #1 · answered by JJ 7 · 0⤊ 0⤋
(1) X^2 - 3X > 0 的情形
f(X)=|X^2-3X|-X+2 = X^2-3X-X+2 = k
整理可得
X^2-4X+(2-k) = 0
有兩相異實根, 判別式>0
所以 16 - 4(2-k) >0 ==> k > -2
(2) X^2 - 3X < 0 的情形
f(X)=|X^2-3X|-X+2 = -X^2+3X-X+2 = k
整理可得
X^2 -2X+(k-2)=0
有兩相異實根, 判別式>0
所以 4 - 4(k-2) >0 ==> k < 3
(3) X^2 - 3X = 0 的情形
可解得X=0或3 ==> k=2或-1
綜合(1)到(3)可知, 3>k>-2
2007-02-09 09:48:24 · answer #2 · answered by ? 2 · 0⤊ 0⤋