English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
所有分類

f(x) = a(x+1) (x+2) + b(x+1) + c(x-2) (x-1)
f(-70) = f(2.33) = f(根號5) = 6
求 a , b , c ?

明天要段考˙˙˙請大家幫忙˙˙謝˙2

2007-01-16 12:47:01 · 3 個解答 · 發問者 +櫻小梨︿︿+ 1 in 教育與參考 考試

答案是:
a=-3
b=7
c=1

2007-01-16 14:10:35 · update #1

這才是答案˙˙˙
剛剛那是不對的
a=-3 b=2 c=1

2007-01-16 14:11:56 · update #2

3 個解答

令 g(x) = f(x) - 6 = a(x+1) (x+2) + b(x+1) + c(x-2) (x-1) - 6
=> g(x) = 0 為二次方程式, 最多有兩根
=> g(-70) = f(-70) - 6 = 0
g(2.33) = f(2.33) - 6 = 0
g(√5) = f(√5) - 6 = 0
=> g(x) = 0 有三相異根 g(x) = 0
=> g(x) = (a + c)x2 + (3a + b - 3c)x + (2a + b + 2c - 6) = 0
=> a + c = 0 ... (1)
3a + b - 3c = 0 ... (2)
2a + b + 2c - 6 = 0 ... (3)
由 (1)*(-2) + (3) => b = 6 代回 (2) => a - c = 0 ... (4)
由 (1) (4) => c = 1, a = -1

由給定的答案及原題的對稱性來看
題目應該是漏寫了一項
f(x) = a(x+1) (x+2) + b(x+1)(x+5) + c(x-2) (x-1)
令 g(x) = f(x) - 6 = a(x+1) (x+2) + b(x+1)(x+5) + c(x-2) (x-1) - 6
=> g(x) = 0 為二次方程式, 最多有兩根
=> g(-70) = f(-70) - 6 = 0
g(2.33) = f(2.33) - 6 = 0
g(√5) = f(√5) - 6 = 0
=> g(x) = 0 有三相異根 g(x) = 0
=> g(x) = (a + b + c)x2 + (3a + 6b - 3c)x + (2a + 5b + 2c - 6) = 0
=> a + b + c = 0 ... (1)
3a + 6b - 3c = 0 ... (2)
2a + 5b + 2c - 6 = 0 ... (3)
由 (1)*(-2) + (3) => b = 2
代回 (1) => a + c = -2 ... (4)
代回 (2) => a - c = -4 ... (5)
由 (4) (5) => a = -3, c = 1
如果有問題, 請來函討論. 不然, 我可能會錯失你再補充的疑點.

2007-01-17 00:03:11 · answer #1 · answered by JJ 7 · 0 0

1.由第二個式子我們可以假設:f(x)=a'(x+70)(x-根號5)+b'(x+70)+c
2.c直接可以看出來6
3.請把根號5代上假設的式子可以得到b'=0
4.再代入2.33可得a'也等於0
5.請把第一式展開可得f(x)=(a+c)x^2+(3a+b-3c)x+2a+b+2c=6為一常數多項式,故a+c=0,3a+b-3c=0,2a+b+2c=6
6.解上面的聯立方程組可得:a=-1,b=6,c=1

答案是這樣嗎?

2007-01-16 22:05:08 補充:
發問的同學:如果用你的那個答案代入的話可以得到:-2x^2-10x-2,用根號5代入答案不會是6耶…你所列的這個答案是不是有待商榷呢?

2007-01-16 13:20:53 · answer #2 · answered by 1 · 0 0

根據我對數學的認知,f(x)應該是一個二次多項式
可是它卻在y=6的地方出現三個根
所以...此題無解
不然就是你抄錯題目了...

2007-01-16 12:55:57 · answer #3 · answered by Anonymous · 0 0

fedest.com, questions and answers