English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
Todas as categorias

2006-12-14 04:09:10 · 6 respostas · perguntado por Arleo Vaner F 1 em Educação e Referência Conhecimentos Gerais

6 respostas

O buraco na camada de ozônio é um fenômeno que ocorre somente durante uma determinada época do ano, entre agosto e início de novembro (primavera no hemisfério sul).

Quando a temperatura se eleva na Antártica, em meados de novembro, a região ainda apresenta um nível abaixo do que seria considerado normal de ozônio.

No decorrer do mês, em função do gradual aumento de temperatura, o ar circundante à região onde se encontra o buraco inicia um movimento em direção ao centro da região de baixo nível do gás.

Desta forma, o deslocamento da massa de ar rica em ozônio (externa ao buraco) propicia o retorno aos níveis normais de ozonificação da alta atmosfera fechando assim o buraco.

A Organização Meteorológica Mundial (WMO) no seu relatório de 2006 prevê que a redução na emissão de CFCs, resultante do Protocolo de Montreal, resultará numa diminuição gradual do buraco de ozônio, com uma recuperação total por volta de 2065. No entanto, essa redução será mascarada por uma variabilidade anual devida à variabilidade da temperatura sobre a Antártica. Quando os sistemas meteorológicos de grande escala, que se formam na troposfera e sobem depois à estratosfera, são mais fracos, a estratosfera fica mais fria do que é habitual, o que causa um aumento do buraco na camada de ozônio. Quando eles são mais fracos (como em 2002), o buraco diminui.

O ar que nos rodeia contém aproximadamente 20% de Oxigênio. A molécula de oxigêno pode ser representada como O2, ou seja, dois átomos de Oxigênio quimicamente ligados. De forma simplista, é o Oxigênio molecular que respiramos e unido aos alimentos que nos dá energia. A molécula de ozônio é uma combinação molecular mais rara dos átomos de oxigênio, sendo representada como O3. Para sua criação é necessária uma certa quantidade de energia. Uma centelha elétrica, por exemplo.

Suponhamos que tenhamos um vazamento de alta tensão num determinado circuito elétrico hipotético (ou uma descarga atmosférica, outro exemplo). No momento da passagem do arco voltaico pelo ar temos uma liberação de energia. Logo:

O2 + energia -> O + O (O significado da flecha é: Transformado em)

Traduzindo: Uma molécula de Oxigênio energizada é transformada em dois átomos de Oxigênio livres.

Os átomos de Oxigênio livres na atmosfera são reativos quimicamente, logo deverão se combinar com moléculas próximas para se estabilizar.

Imaginemos que tenhamos adjacentes aos átomos livres de oxigênio moléculas de oxigênio e outras quaisquer. Chamemos as segundas deM (de molécula).

Logo teremos:

O + O2 + M -> O3 + M

Traduzindo: Um átomo livre de Oxigênio com uma molécula de Oxigênio e uma molécula qualquer são transformados em Ozônio e uma molécula qualquer.

Aquela molécula qualquer não é consumida pela reação, porém é necessária para que possa se realizar. Na verdade M é um catalisador, pode ser no caso da atmosfera da Terra o nitrogênio molecular (N2), onde M=N2, por exemplo.

Portanto, esta é uma das formas mais comuns de se produzir ozônio. Outras seriam fornos industriais, motores automotivos entre outros que produzem o gás. Na baixa atmosfera o ozônio é reativo e contribui para a poluição atmosférica industrial, sendo considerado um veneno.

O Ozônio, sem a presença do Cloro, age como um escudo contra as radiações UV. É um gás tão raro e tão precioso na alta atmosfera que se a ozonosfera fosse trazida para o nível do mar nas condições normais de temperatura e pressão, esta camada chegaria à espessura de apenas alguns milímetros. É este gás que nos protege de ter a nossa pele cauterizada pelas radiações Ultra-Violetas do Sol.

A consequência imediata da exposição prolongada à radiação UV é a degeneração celular que ocasionará um câncer de pele nos seres humanos de pele clara. As pessoas de pele escura não estão livres desse câncer, a diferença é somente o tempo de exposição. Até o final da década de 1990, os casos de câncer de pele registrados devido ao buraco na camada de Ozônio tiveram um incremento de 1000% em relação à década de 1950. Alguns desinformados e principalmente aqueles defensores das indústrias fabricantes de CFCs, dizem que este aumento foi devido à melhoria da tecnologia de coleta de dados, e que os danos são muito menores do que os alarmados e alardeados pelos cientistas atmosféricos.

O buraco da camada de Ozônio tem implicações muito maiores do que o câncer de pele nos humanos. As moléculas orgânicas expostas à radiação UV têm alterações significativas e formam ligações químicas nocivas aos seres vivos. A radiação UV atinge em especial o fitoplâncton que habita a superfície dos oceanos e morre pela sua ação.

Espero ter ajudado, um abraço,
Lena

2006-12-17 03:36:05 · answer #1 · answered by Leda Très Maligne etJolie 3 · 0 0

pergunta interesante a sua, vou pesquisar e se encontrar eu te respondo.

2006-12-14 04:37:19 · answer #2 · answered by NATÁLIA 2 · 0 0

Na região da Antárdida, principalmente no mês de setembro, quase a metade da concentração de ozônio é misteriosamente sugada da atmosfera. Não tem explicação, mas é um fato!

2006-12-14 04:24:05 · answer #3 · answered by Anonymous · 0 0

Boa pergunta a sua.
Estamos frente ao maior perigo que a humanidade já enfrentou." Essas palavras foram proferidas pelo Dr. Mostafa Toba, diretor-executivo do Programa das Nações Unidas Para o Meio Ambiente. A seguir, nós vamos verificar que elas não são exageradas.

O ozônio é um gás atmosférico azul-escuro, que se concentra na chamada estratosfera, uma região situada entre 20 e 40 km de altitude. A diferença entre o ozônio e o oxigênio dá a impressão de ser muito pequena, pois se resume a um átomo: enquanto uma molécula de oxigênio possui dois átomos, uma molécula de ozônio possui três.

Essa pequena diferença, no entanto, é fundamental para a manutenção de todas as formas de vida na Terra, pois o ozônio tem a função de proteger o planeta da radiação ultravioleta do Sol. Sem essa proteção, a vida na Terra seria quase que completamente extinta.

O ozônio sempre foi mais concentrado nos pólos do que no equador, e nos pólos ele também se situa numa altitude mais baixa. Por essa razão, as regiões dos pólos são consideradas propícias para a monitoração da densidade da camada de ozônio.

Desde 1957 são feitas medições na camada de ozônio acima da Antártida e os valores considerados normais variam de 300 a 500 dobsons. No ano de 1982, porém, o cientista Joe Farman, juntamente com outros pesquisadores da British Antartic Survey, observaram pela primeira vez estranhos desaparecimentos de ozônio no ar sobre a Antártida. Como estavam usando um equipamento já um tanto antigo, e os dados que estavam coletando não tinham precedentes, em vista da grande diminuição da concentração do gás (cerca de 20% de redução na camada de ozônio), acharam por bem aguardar e fazer novas medições em outra época, com um aparelho mais moderno, antes de tornar público um fato tão alarmante. Além disso, o satélite Nimbus 7, lançado em 1978 com a função justamente de monitorar a camada de ozônio, não havia até então detectado nada danormal sobre a Antártida.

Joe Farman e seus colegas continuaram medindo o ozônio na Antártida nos dois anos seguintes, no período da primavera, e constataram não só que a camada de ozônio continuava diminuindo como ainda que essa redução tornava-se cada vez maior. Agora estavam usando um novo equipamento, o qual lhes indicou, em 1984, uma redução de 30% na camada de ozônio, valor este confirmado por uma outra estação terrestre situada a 1.600 km de distância. Nos anos seguintes a concentração de ozônio continuou a cair na época da primavera e, em 1987, verificou-se que 50% do ozônio estratosférico havia sido destruído, antes que uma recuperação parcial ocorresse com a chegada do verão antártico.

O satélite Nimbus 7 não havia detectado as primeiras reduções na camada de ozônio por uma razão muito simples: ele não havia sido programado para detectar níveis de ozônio tão baixos. Valores abaixo de 200 dobsons eram considerados erros de leitura, e por isso não eram levados em conta…

Os cientistas não podiam prever que uma alteração tão drástica na ordem natural pudesse ocorrer, e por essa razão não haviam considerado essa hipótese.

Num artigo científico escrito em 1987, Joe Farman declarou: "Antes de 1985 todos os químicos atmosféricos pensavam que estavam no caminho certo de compreenderem o ozônio. As observações e os modelos propostos se harmonizavam. Mudanças observadas e previstas eram de menos de 1% por década. Entretanto, sobre a Antártida a destruição é hoje em dia superior a 50%, e isto por um período entre 30 e 40 dias a cada ano."

Naquela época Joe Farman ainda não podia imaginar que a destruição ainda aumentaria muito mais nos próximos anos, que o buraco se alargaria, que sua ocorrência não ficaria restrita a alguns dias por ano, que apareceria um segundo buraco no Ártico e que surgiriam outros pontos no globo com decréscimo do nível de ozônio.

De fato, já mesmo em 1987 foram detectadas ocorrências menores, apelidadas de "mini-buracos", que apareceram próximos à região polar. O próprio buraco antártico apresentou variações inconcebíveis naquele ano: em outubro havia desaparecido nada menos que 97,5% do ozônio detectado em agosto, na altitude de 16,5 km.

Em seu livro O Buraco no Céu, publicado em 1988, John Gribbin afirma que mesmo que não houvesse sido detectado o buraco no ozônio na Antártida, os anos de 1986 e 1987 já teriam dado motivos de sobra para preocupação. Medições de satélite indicaram, já naquela época, uma "impressionante diminuição geral na concentração de ozônio estratosférico ao redor do globo." Essa redução já havia alcançado o sul da América do Sul, Austrália e Nova Zelândia, esta última com um decréscimo de 20%. A Suíça também mostrou preocupação na época, quando medições feitas com instrumentos em terra revelaram um estreitamento da camada de ozônio sobre o país.

Em 1991, a NASA anunciou que o ozônio estratosférico sobre a Antártida havia atingido o nível mais baixo até então registrado: 110 dobsons para um nível esperado de 500 dobsons. Também em 1991, o Programa das Nações Unidas Para o Meio Ambiente (PNUMA) revelou que, pela primeira vez, estava-se produzindo uma perda importante do ozônio tanto na primavera como no verão, e tanto no hemisfério norte como no hemisfério sul, em latitudes altas e médias. Este fato fez crescer a apreensão geral, já que no verão os raios solares são muito mais perigosos que no inverno.

Em 1992 verificou-se que havia-se formado um buraco também sobre o Ártico, com uma redução de 20% do ozônio. O novo buraco do Ártico não só permaneceu como continuou aumentando: nos três primeiros meses de 1996 ele cresceu mais de 30%, estabelecendo um novo recorde.

Ainda em 1992 os pesquisadores constataram que a destruição estava se generalizando mais ainda, ocorrendo de forma global desde a Antártida até o Ártico, nos trópicos e nas regiões de latitudes médias, com uma redução variando entre 10% e 15%. A partir daquela época, os habitantes das ilhas Falklands/Malvinas passaram a ficar expostos ao buraco todos os anos durante o mês de outubro.

A figura abaixo mostra a variação do buraco na Antártida ano a ano, de 1979 até 1992. Observa-se um crescimento contínuo durante a década de 80, com ligeira redução de suas dimensões nos anos de 1986 e 1988. A partir de 1989, porém, o buraco não se reduz mais.

2006-12-14 04:23:40 · answer #4 · answered by Ricardão 7 · 0 0

Devido a extensão da massa glacial do continente antártico,pois como o ar é bastante denso,favorece a expansão do tal buraco.

2006-12-14 04:14:15 · answer #5 · answered by Jones Paul - BSB 3 · 0 0

Também quero saber. Respondam.

2006-12-14 04:11:49 · answer #6 · answered by Anonymous · 0 0

fedest.com, questions and answers