y"+9y=t^2 ; y(0)=y'(0)=0 求初值 ,以快速拆根法詳解 3q
2006-11-28 12:14:39 · 2 個解答 · 發問者 eric 7 in 教育與參考 ➔ 考試
以下是重根的性質:
若有一函數為:ƒ(x) = g(x)/[ m(x)( x ± a )2 ]
則可直接拆成:ƒ(x) = [ k1/( x ± a ) ] + [ k2/( x ± a )2 ]
k2 = ( 1/0! )[ g(x)/m(x) ] x = ( x ± a )
k1 = ( 1/1! )( d/dx )[ g(x)/m(x) ] x = ( x ± a )
2006-11-28 12:16:05 · update #1
Problem:y'' + 9y = t2 , y(0) = y'(0) = 0sol: 等號兩邊同取 Laplace 轉換:£{ y'' + 9y }= £{ t2 } → s2Y + 9Y = ( 2/s3 ) → ( s2 + 9 )Y = ( 2/s3 ) → Y = 2/[ s3( s2 + 9 ) ] 分母有三重根〝 0 , 0 , 0 〞與共軛複根〝 ± 3 i 〞,可直接拆項如下: Y = ( k1/s ) + ( k2/s2 ) + ( k3/s3 ) + ( U/3 )[ 3/( s2 + 9 ) ] + ( V/3 )[ s/( s2 + 9 ) ] 再算各項係數,我們先算重根部份的係數,再算共軛複根部份的係數。 重根部份係數: k3 = ( 1/0! )[ 2/( s2 + 9 ) ] s = 0 = ( 2/9 ) k2 = ( 1/1! )( d/ds )[ 2/( s2 + 9 ) ] s = 0 = [ - 4s/( s2 + 9 ) ] s = 0 = 0 k1 = ( 1/2! )( d2/ds2 )[ 2/( s2 + 9 ) ] s = 0 = ( 1/2 )( d/ds )[ - 4s/( s2 + 9 ) ] s = 0 = ( 1/2 )[ - 36/( s2 + 9 )3 ] s = 0 = [ - 18/( s2 + 9 )3 ] s = 0 = - ( 2/81 ) 共軛複根部份係數: U + i V = [ 2/s3 ] s = 3 i = ( 2 i/27 ) → ( U/3 ) = 0 , ( V/3 ) = ( 2/81 ) → Y = ( 2/9 )( 1/s3 ) - ( 2/81 )( 1/s ) + ( 2/81 )[ s/( s2 + 9 ) ] y = £ - 1{ Y } → y = ( 2/9 )( t2/2 ) - ( 2/81 ) + ( 2/81 ) cos 3t , t ≥ 0 = ( 2/9 )[ ( t2/2 ) + ( 1/9 ) cos 3t - ( 1/9 ) ] , t ≥ 0 → y = ( 2/9 )[ ( t2/2 ) + ( 1/9 ) cos 3t - ( 1/9 ) ] , t ≥ 0 #* 這個答案絕對正確,我用時域積分性質算過答案也一樣;這是三重根的令法,我之前舉的例是二重根的,希望您能看出規則,依此類推到四重根或五重根;希望以上回答能幫助您。
2006-11-29 20:35:36 補充:
大哥不要嚇我啊!( 1/2 )[ - 36/729 ] 約分不就等於 - ( 2/81 ) 嗎?
還有您的二階沒算完,只算一半,除法微分如下:
( d/dx )( u/v )= ( u'v - uv' )/v^2
您的二階微分只算 u'v,沒減去 uv',瞭解嗎?
2006-11-28 18:31:22 · answer #1 · answered by 龍昊 7 · 0⤊ 0⤋
但是- 4s/( s^2 + 9 )作第2次除法微分應該=
(4s^2 - 36)/( s2 + 9 )^2 , 分母部分不是加平方嗎 你怎算成3次方的?
2006-11-30 03:16:30 · answer #2 · answered by eric 7 · 0⤊ 0⤋