8. y"+9y=t^2 ; y(0)=y'(0)=0
9. y"+16y=1+t ; y(0)=-2 , y'(0)=1
10. y"-5y'+6y=e^-t ; y(0)=0 , y'(0)=2
求詳細 ,同時我對部份分式不熟 只會算最簡單的部份分式要如何令。
將選您最佳答案
2006-11-26 15:48:48 · 2 個解答 · 發問者 eric 7 in 教育與參考 ➔ 考試
8. y'' + 9y = t2 , y(0) = 0 , y'(0) = 0sol: 等號兩邊同取 Laplace 轉換得:s2Y + 9Y = ( 2/s2 ) → ( s2 + 9 )Y = ( 2/s2 ) → Y = 2/[ s2( s2 + 9 ) ] 分母有重根〝0 , 0〞與共軛複根〝 ± i 〞。 Y = ( k1/s ) + ( k2/s2 ) + ( U/3 )[ 3/( s2 + 9 ) ] + ( V/3 )[ s/( s2 + 9 ) ] k2 = ( 1/0! )[ 2/( s2 + 9 ) ] s = 0 = ( 2/9 ) k1 = ( 1/1! )( d/ds )[ 2/( s2 + 9 ) ] s = 0 = [ - 4s/( s2 + 9 ) ] s = 0 = 0 U + i V = [ 2/s2 ] s = 3 i = - ( 2/9 ) → ( U/3 ) = - ( 2/27 ) , ( V/3 ) = 0 → Y = ( 2/9 )( 1/s2 ) - ( 2/27 )[ 3/( s2 + 9 ) ] y = £ - 1{ Y } → y = ( 2t/9 ) - ( 2/27 ) sin 3t , t ≥ 0 #*9. y'' + 16y = 1 + t , y(0) = - 2 , y'(0) = 1sol: 等號兩邊同取 Laplace 轉換得:s2Y + 2s - 1 + 16Y = ( 1/s ) + ( 1/s2 ) → ( s2 + 16 )Y = [ ( s + 1 )/s2 ] - 2s + 1 → Y = ( - 2s2 + 2s + 1 )/[ s2( s2 + 16 ) ] 分母有重根〝0 , 0〞與共軛複根〝 ± 4 i 〞。 Y = ( k1/s ) + ( k2/s2 ) + ( U/4 )[ 4/( s2 + 16 ) ] + ( V/4 )[ s/( s2 + 16 ) ] k2 = ( 1/0! )[ ( - 2s2 + 2s + 1 )/( s2 + 16 ) ] s = 0 = ( 1/16 ) k1 = ( 1/1! )( d/ds )[ ( - 2s2 + 2s + 1 )/( s2 + 16 ) ] s = 0 = [ ( - 2s2 - 66s + 32 )/( s2 + 16 )2 ] s = 0 = ( 1/8 ) U + i V = [ ( - 2s2 + 2s + 1 )/s2 ] s = 4 i = - ( 33 + 8 i )/16 → ( U/4 ) = - ( 33/64 ) , ( V/4 ) = - ( 1/8 ) → Y = ( 1/64 )[ ( 4/s ) + ( 8/s2 ) - 33‧4/( s2 + 16 ) - 8s/( s2 + 16 ) ] y = £ - 1{ Y } → y = ( 1/64 )( 4 + 8t - 33 sin 4t - 8 cos 4t ) , t ≥ 0 #*10. y'' - 5y' + 6y = e - t , y(0) = 0 , y'(0) = 2sol: 等號兩邊同取 Laplace 轉換得:s2Y - 2 - 5sY + 6Y = 1/( s + 1 ) → ( s2 - 5s + 6 )Y = [ 1/( s + 1 ) ] + 2 → ( s - 2 )( s - 3 )Y = ( 2s + 3 )/( s + 1 ) → Y = ( 2s + 3 )/[ ( s + 1 )( s - 2 )( s - 3 ) ] 分母有相異實根〝 - 1 , 2 , 3 〞 Y = k1/( s + 1 ) + k2/( s - 2 ) + k3/( s - 3 ) k1 = [ ( 2s + 3 )/( s - 2 )( s - 3 ) ] s = - 1 = ( 1/12 ) k2 = [ ( 2s + 3 )/( s + 1 )( s - 3 ) ] s = 2 = - ( 7/3 ) k3 = [ ( 2s + 3 )/( s + 1 )( s - 2 ) ] s = 3 = ( 9/4 ) → Y = ( 1/12 )[ 1/( s + 1 ) ] - ( 7/3 )[ 1/( s - 2 ) ] + ( 9/4 )[ 1/( s - 3 ) ] y = £ - 1{ Y } → y = ( 1/12 )e - t - ( 7/3 )e2t + ( 9/4 )e3t , t ≥ 0 #* 希望以上回答能幫助您。
2006-11-28 21:27:35 補充:
Damn it ! 這下子錯大了!
Y = 2/s^3‧( s^2 + 9 )
分母有三重根,重根部分拆成這樣↓
Y = ( k1/s ) + ( k2/s^2 ) + ( k3/s^3 )
k3 = ( 1/0! )[ 2/( s^2 + 9 ) ] ( s = 0 )
k2 = ( 1/1! )( d/ds )[ 2/( s^2 + 9 ) ] ( s = 0 )
k1 = ( 1/2! )( d^2/ds^2 )[ 2/( s^2 + 9 ) ] ( s = 0 )
有看出規則嗎?要是係數算不出來再跟我說吧。
2006-11-27 06:58:58 · answer #1 · answered by 龍昊 7 · 0⤊ 0⤋
這題我會解3q
2006-11-30 14:11:04 · answer #2 · answered by eric 7 · 0⤊ 0⤋