2. y' - 9y = t , y(0) = 5
3. y'+4y=cos(t) ; y(0)=0
5. y'-2y=1-t ; y(0)=4
第2題是過程中的部份分式我不知怎令,因為分母有2次方項,我只知一次方項怎令,順便問這題。 求詳解 並選您為最佳答案 ,第3、5題應該也能用部份分式讓函數方便直接利用拉氏公式反轉換吧?
2006-11-26 15:23:55 · 1 個解答 · 發問者 eric 7 in 教育與參考 ➔ 考試
2. y' - 9y = t , y(0) = 5sol: 等號兩邊同取 Laplace 轉換:£{ y' - 9y }= £{ t } → sY - 5 - 9Y = ( 1/s2 ) → ( s - 9 )Y = ( 5s2 + 1 )/s2 → Y = ( 5s2 + 1 )/s2( s - 9 ) 分母有重根〝 0 , 0 〞與異實根〝 9 〞。 Y = ( k1/s ) + ( k2/s2 ) + k3/( s - 9 ) k3 = [ ( 5s2 + 1 )/s2 ] s = 9 = ( 406/81 ) k2 = ( 1/0! )[ ( 5s2 + 1 )/( s - 9 ) ] s = 0 = - ( 1/9 ) k1 = ( 1/1! )( d/ds )[ ( 5s2 + 1 )/( s - 9 ) ] s = 0 = [ ( 5s2 - 90s + 1 )/( s - 9 )2 ] s = 0 = - ( 1/81 ) → Y = - ( 1/81 )( 1/s ) - ( 1/9 )( 1/s2 ) + ( 406/81 )[ 1/( s - 9 ) ] = ( 1/81 )[ 406/( s - 9 ) - ( 9/s2 ) - ( 1/s ) ] y = £ - 1{ Y } → y = ( 1/81 )( 406e9t - 9t - 1 ) , t ≥ 0 #*3. y' + 4y = cos t , y(0) = 0sol: 等號兩邊同取 Laplace 轉換:£{ y' + 4y }= £{ cos t } → sY + 4Y = s/( s2 + 1 ) → ( s + 4 )Y = s/( s2 + 1 ) → Y = [ s/( s + 4 )( s2 + 1 ) ] 分母有一實根〝 - 4 〞與共軛複根〝 ± i 〞。 Y = [ k1/( s + 4 ) ] + U [ 1/( s2 + 1 ) ] + V [ s/( s2 + 1 ) ] k1 = [ s/( s2 + 1 ) ] s = - 4 = - ( 4/17 ) U + i V = [ s/( s + 4 ) ] s = i = i/( 4 + i ) = ( 1 + 4 i )/17 → U = ( 1/17 ) , V = ( 4/17 ) → Y = ( 1/17 )[ 1/( s2 + 1 ) ] + ( 4/17 )[ s/( s2 + 1 ) ] - ( 4/17 )[ 1/( s + 4 ) ] → y = ( 1/17 )( sin t + 4 cos t ) - ( 4e - 4t/17 ) , t ≥ 0 #*5. y' - 2y = 1 - t , y(0) = 4 註sol: 等號兩邊同取 Laplace 轉換:£{ y' - 2y }= £{ 1 - t } → sY - 4 - 2Y = ( 1/s ) - ( 1/s2 ) → ( s - 2 )Y = ( 1/s ) - ( 1/s2 ) + 4 → Y = ( 4s2 + s - 1 )/s2( s - 2 ) 分母有重根〝 0 , 0 〞與實根〝 2 〞。 Y = ( k1/s ) + ( k2/s2 ) + k3/( s - 2 ) k3 = [ ( 4s2 + s - 1 )/s2 ] s = 2 = ( 17/4 ) k2 = ( 1/0! )[ ( 4s2 + s - 1 )/( s - 2 ) ] s = 0 = ( 1/2 ) k1 = ( 1/1! )( d/ds )[ ( 4s2 + s - 1 )/( s - 2 ) ] s = 0 = ( 3/2 ) → y = ( 1/4 )( 17e2t + 2t + 6 ) , t ≥ 0 #註:這題我第一次幫您算時,係數有算錯,抱歉我太粗心了,原諒我 Orz...* 這些題目都可以用部份分式展開來算,只是有時候利用性質來求解會比較快而已;希望以上回答能幫助您。
2006-11-27 07:29:37 · answer #1 · answered by 龍昊 7 · 0⤊ 0⤋