I ( x + y = 11
II (x - y = 3
Método de substituição:
Equação I, isolando a incógnita: x = 11 - y Eentão,
Substitui-se o valor isolado pelo x da Equação II:
(11 - y) - y = 3
11 -2y = 3
-2y = 3 -11
y = -8 : -2
y = 4
x + y = 11
x + 4 =11
x = 11 -4
x = 7
Resposta: Pares (7; 4)
><<
2006-11-25 02:55:52
·
answer #1
·
answered by aeiou 7
·
0⤊
0⤋
Inverta os sinais de uma das equações (a linha toda da eq. I) para que uma das incógnitas seja cancelada. Ex: a) x+2y = 17 (-) equação I x-y = 4 equação II Método de Adição ou Eliminação: some x com x, y com y e a parte numérica que é -17 e 4. -x - 2y = -17 x - y = 4 ----------------- -3y = - 13 y = 13/3 x - y = 4 x - 13/3 = 4 x = 4 + 13/3 x = 26/3 :: Para Substituição: Isole o x x = 8 - y equação I Substituia o valor de x na eq. II (8-y) - y = 4 Elimine os parênteses e resolva a equação. encontre os valroes de x e de y. Tente o próximo por si só. É fazendo que se aprende. Faça vários exercícios desse tipo para pegar prática. Comece pelos mais fáceis, relendo seu livro-texto.
2016-12-17 15:59:16
·
answer #2
·
answered by ? 4
·
0⤊
0⤋
x+y=11 > x=11-y
x-y=3
(11-y)-y=3
-y-y=3-11
-2y= - 8
y= -8/-2
y= 4
x+y=11
x+4=11
x=11-4
x=7
Então x=7 e y=4
2006-11-28 03:52:21
·
answer #3
·
answered by Raquel 2
·
0⤊
0⤋
Eu tentei resolver uma outra questão que você tinha colocado, e depois de fazer no papel, quando fui responder, a questao tinha sido deletada, se ainda interessar, segue o que eu consegui fazer:
E = 2x-10/x²-1 + 4/x-1 - 4/x+1
Fazendo mínimo múltiplo comum:
E = [(2x-10)(x-1)(x+1) + 4(x²-1)(x+1) - 4(x²-1)(x-1)] / [(x²-1)(x-1)(x+1)]
E = [(2x²-2x-10x+10)(x+1) + (4x²-4)(x+1) + (-4x²+4)(x-1)] / [(x³-x²-x+1)(x+1)]
E = [(2x²-12x+10)(x+1) + 4x³+4x²-4x-4 - 4x³+4x²+4x-4] / [x4*+x³-x³-x²-x²-x+x+1]
x4* = x elevado a 4
E = [2x³-12x²+10x+2x²-12x+10 + 8x²-8] / [x4*-2x²+1]
E = [2x³-2x²-2x+2] / [x4*-2x²+1] -> resultado final a que cheguei
ou
colocando o 2 do numerador em evidência:
E = [2(x³-x²-x+1] / [x4*-2x²+1]
Quanto à equação:
x+y=11
x-y=3
x=11-y
assim:
(11-y)-y=3
11-y-y=3
11-2y=3
11-3=2y
8=2y
y=8/2 = 4
x=11-y=11-4 = 7
x=7 e y=4
Espero ter ajudado.
2006-11-26 06:20:51
·
answer #4
·
answered by styr 3
·
0⤊
0⤋
Separa uma das incognitas de uma equação e substitui na outra:
x+y=11
x-y=3
=>
y=11-x
x-y=3
=>
x-(11-x)=3
x-11+x=3
2x=3+11
x=14/2
x=7
=>
Agora substitui x em uma das equaçoes (primeira):
7+y=11
y=11-7
y=4
Resposta: x=7 e y=4
₢
2006-11-25 06:39:38
·
answer #5
·
answered by Luiz S 7
·
0⤊
0⤋
x+y=11
x-y=3
x=3+y logo
(3+y)+y=11
2y=11-3
y=4 achando x
x+y=11
x+4=11
x=7
espero ter ajudado
2006-11-25 03:18:12
·
answer #6
·
answered by fabiano 3
·
0⤊
0⤋
x+y=11
x-y=3
x=11-y
x=3+y
3+y=11-y
x=3+y
2y=11-3
x=3+y
2y=8
x=3+y
y=4
x=3+y
y=4
x=3+4
y=4
x=7
2006-11-25 03:12:05
·
answer #7
·
answered by Anonymous
·
0⤊
0⤋
Seja o sistema a seguir:
x+y=11
x-y=3.
Somando termo a ter temos:
(x+x)+(y-y)=(11+3), ou 2x=14, logo x=7.
Substituindo em qualquer umas das equações temos:
y=4
Logo a solução é: x=7 e y=4.
A subtração ocorreu quando foi somado y+(-y)=y-y=0
2006-11-25 03:04:38
·
answer #8
·
answered by Anonymous
·
0⤊
0⤋