我算了一遍發覺我不會的應該都是同類型的題目。但課本的例題我可會算喔,只是到了反拉氏轉換卻不會算。
1. y'+4y=1 ; y(0)=-3
2. y'-9y=t ; y(0)=5
3. y'+4y=cos(t) ; y(0)=0
5. y'-2y=1-t ; y(0)=4
我須要詳解 ,因為書本上的解答 有的F(s) 我與它算的不太一樣 覺得它在作反拉氏變換前的F(s)怪怪的
2006-11-25 13:33:29 · 1 個解答 · 發問者 eric 7 in 教育與參考 ➔ 考試
Laplace 轉換之時域微分性質:£{ y' }= sY - y(0)*Laplace 轉換之時域積分性質:£{∫0t ydτ }= ( Y/s ) £{∫0t∫0τ ydαdτ }= ( Y/s2 )*Laplace 轉換之時域旋積性質:£{ ƒ(t) * g(t) }= FG ƒ(t) * g(t) =∫0t ƒ(τ)g( t - τ )dτ* 以上是我解算題目需用到的性質,現在開始解題囉。*1. y' + 4y = 1 , y(0) = - 3sol: 等號兩邊同取 Laplace 轉換:£{ y' + 4y }= £{ 1 } → sY + 3 + 4Y = ( 1/s ) → ( s + 4 )Y = ( 1 - 3s )/s → Y = ( 1 - 3s )/s( s + 4 ) = ( k1/s ) + k2/( s + 4 ) k1 = [ ( 1 - 3s )/( s + 4 ) ] s = 0 = ( 1/4 ) k2 = [ ( 1 - 3s )/s ] s = - 4 = - ( 13/4 ) → Y = ( 1/4 )[ ( 1/s ) - 13/( s + 4 ) ] y = £ - 1{ Y } → y = ( 1/4 )( 1 - 13e - 4t ) , t ≥ 0 #*2. y' - 9y = t , y(0) = 5sol: 等號兩邊同取 Laplace 轉換:£{ y' - 9y }= £{ t } → sY - 5 - 9Y = ( 1/s2 ) → ( s - 9 )Y = ( 5s2 + 1 )/s2 → Y = ( 5s2 + 1 )/s2( s - 9 ) = ( k1/s ) + ( k2/s2 ) + k3/( s - 9 ) k3 = [ ( 5s2 + 1 )/s2 ] s = 9 = ( 406/81 ) k2 = ( 1/0! )[ ( 5s2 + 1 )/( s - 9 ) ] s = 0 = - ( 1/9 ) k1 = ( 1/1! )( d/ds )[ ( 5s2 + 1 )/( s - 9 ) ] s = 0 = [ ( 5s2 - 90s + 1 )/( s - 9 )2 ] s = 0 = - ( 1/81 ) → Y = - ( 1/81 )( 1/s ) - ( 1/9 )( 1/s2 ) + ( 406/81 )[ 1/( s - 9 ) ] = ( 1/81 )[ 406/( s - 9 ) - ( 9/s2 ) - ( 1/s ) ] y = £ - 1{ Y } → y = ( 1/81 )( 406e9t - 9t - 1 ) , t ≥ 0 #*3. y' + 4y = cos t , y(0) = 0sol: 等號兩邊同取 Laplace 轉換:£{ y' + 4y }= £{ cos t } → sY + 4Y = s/( s2 + 1 ) → ( s + 4 )Y = s/( s2 + 1 ) → Y = [ s/( s2 + 1 ) ][ 1/( s + 4 ) ] y = £ - 1{ Y }= ( cos t ) * e - 4t =∫0t ( cos τ )e - 4 ( t - τ ) dτ = e - 4t∫0t e4τ cos τ dτ = e - 4t [ e4τ/( 42 + 12 ) ][ 4 cos τ + sin τ ] τ 代 t 減 τ 代 0 = ( 1/17 )( 4 cos t + sin t ) - ( 4e - 4t/17 ) cos t , t ≥ 0 → y = ( 1/17 )( 4 cos t + sin t ) - ( 4e - 4t/17 ) cos t , t ≥ 0 #*5. y' - 2y = 1 - t , y(0) = 4sol: 等號兩邊同取 Laplace 轉換:£{ y' - 2y }= £{ 1 - t } → sY - 4 - 2Y = ( 1/s ) - ( 1/s2 ) → ( s - 2 )Y = ( 1/s ) - ( 1/s2 ) + 4 → Y = [ 1/s( s - 2 ) ] - [ 1/s2( s - 2 ) ] + [ 4/( s - 2 ) ] y = £ - 1{ Y }=∫0t e2τ dτ -∫0t∫0τ e2α dα dτ + 4e2t = ( 1/2 )e2τ│τ 代 t 減 τ 代 0 -∫0t ( 1/2 )e2α│α 代 τ 減 α 代 0 + 4e2t = ( 1/2 )( e2t - 1 ) - ( 1/2 )∫0t ( e2τ - 1 ) dτ + 4e2t = ( 1/2 )( e2t - 1 ) + 4e2t - ( 1/2 )[ ( 1/2 )e2τ - τ ] τ 代 t 減 τ 代 0 = ( 1/2 )( e2t - 1 ) + 4e2t - ( 1/4 )e2t - ( t/2 ) + ( 1/4 ) = ( 17/4 )e2t - ( t/2 ) - ( 1/4 ) = ( 1/4 )( 17e2t - 2t - 1 ) , t ≥ 0 → y = ( 1/4 )( 17e2t - 2t - 1 ) , t ≥ 0 #* 希望以上回答能幫助您。
2006-11-25 21:03:02 · answer #1 · answered by 龍昊 7 · 0⤊ 0⤋