高等工程數學k版9th的題目
6.(xD^3+4D^2)y=8e^x
2006-11-24 22:26:13 · 2 個解答 · 發問者 Anonymous in 教育與參考 ➔ 考試
6. ( xD3 + 4D2 ) y = 8exsol: 令:u = D2y → Du = D3y 原式寫成:xDu + 4u = 8ex → Du + ( 4/x ) u = ( 8ex/x ) ~ 一階線性 o.d.e. 積分因子:I(x) = e∫( 4/x )dx = e 4 ln│x│ = x4 u = ( 1/x4 )(∫8x3exdx + k3 ) = ( 1/x4 )( 8x3ex - 24x2ex + 48xex - 48ex + k3 ) = ( 8ex/x ) - ( 24ex/x2 ) + ( 48ex/x3 ) - ( 48ex/x4 ) + ( k3/x4 ) → D2y = ( 8ex/x ) - ( 24ex/x2 ) + ( 48ex/x3 ) - ( 48ex/x4 ) + ( k3/x4 ) 上式為二階線性 o.d.e. 特徵方程式 ( characteristic equation ):r2 = 0 → r = 0 , 0 ~ 重根 ( real double root ) → yh = c1 + c2x ~ 齊次解 ( homogenous solution ) 利用參數變異法 ( variation of parameters ) 求特解 yp。 令:Q = ( 8ex/x ) - ( 24ex/x2 ) + ( 48ex/x3 ) - ( 48ex/x4 ) + ( k3/x4 ) yp = φ1y1 + φ2y2 = u1 + u2x W =│1 x│= 1 │0 1│ φ1 =∫( - y2Q/W )dx =∫- x [ ( 8ex/x ) - ( 24ex/x2 ) + ( 48ex/x3 ) - ( 48ex/x4 ) + ( c3/x4 ) ]dx =∫[ - 8ex + ( 24ex/x ) - ( 48ex/x2 ) + ( 48ex/x3 ) - ( k3/x3 ) ]dx = - 8ex + ( k3/2x2 ) +∫[ ( 24ex/x ) - ( 48ex/x2 ) + ( 48ex/x3 ) ]dx 後面那串積分,用分部積分慢慢搞吧!公式為∫udv = uv -∫vdu 令:u = 48ex 則:du = 48exdx dv = ( 1/x3 ) v = - ( 1/2x2 ) →∫( 48ex/x3 )dx = - ( 24ex/x2 ) +∫( 24ex/x2 )dx 把上面結果套入∫[ ( 24ex/x ) - ( 48ex/x2 ) + ( 48ex/x3 ) ]dx 這串積分! 得:φ1 = - 8ex + ( k3/2x2 ) - ( 24ex/x2 ) +∫[ ( 24ex/x ) - ( 24ex/x2 ) ]dx 再用分部積分算一次吧! 令:u = - 24ex 則:du = - 24exdx dv = ( 1/x2 ) v = - ( 1/x ) →∫- ( 24ex/x2 )dx = ( 24ex/x ) -∫( 24ex/x )dx 把上面結果套入∫[ ( 24ex/x ) - ( 48ex/x2 ) + ( 48ex/x3 ) ]dx 這串積分! 得:φ1 = - 8ex + ( k3/2x2 ) - ( 24ex/x2 ) + ( 24ex/x ) φ2 =∫( y1Q/W )dx =∫[ ( 8ex/x ) - ( 24ex/x2 ) + ( 48ex/x3 ) - ( 48ex/x4 ) + ( k3/x4 ) ]dx = - ( k3/3x3 ) +∫[ ( 8ex/x ) - ( 24ex/x2 ) + ( 48ex/x3 ) - ( 48ex/x4 ) ]dx 一樣用分部積分慢慢搞吧。 令:u = - 48ex 則:du = - 48exdx dv = ( 1/x4 ) v = - ( 1/3x3 ) →∫- ( 48ex/x4 ) ]dx = ( 16ex/x3 ) -∫( 16ex/x3 )dx 得:φ2 = - ( k3/3x3 ) + ( 16ex/x3 ) +∫[ ( 8ex/x ) - ( 24ex/x2 ) + ( 32ex/x3 ) ]dx 令:u = 32ex 則:du = 32exdx dv = ( 1/x3 ) v = - ( 1/2x2 ) →∫( 32ex/x3 )dx = - ( 16ex/x2 ) +∫( 16ex/x2 )dx 得:φ2 = - ( k3/3x3 ) + ( 16ex/x3 ) - ( 16ex/x2 ) +∫[ ( 8ex/x ) - ( 8ex/x2 ) ]dx 令:u = - 8ex 則:du = - 8exdx dv = ( 1/x2 ) v = - ( 1/x ) →∫- ( 8ex/x2 )dx = ( 8ex/x ) -∫( 8ex/x )dx 得:φ2 = - ( k3/3x3 ) + ( 16ex/x3 ) - ( 16ex/x2 ) + ( 8ex/x ) yp = φ1y1 + φ2y2 = u1 + u2x = - 8ex + ( k3/2x2 ) - ( 24ex/x2 ) + ( 24ex/x ) - ( k3/3x2 ) + ( 16ex/x2 ) - ( 16ex/x ) + 8ex = ( k3/6x2 ) - ( 8ex/x2 ) + ( 8ex/x ) 令:( k3/6 ) = c3 → yp = ( c3/x2 ) - ( 8ex/x2 ) + ( 8ex/x ) ~ 特解 ( particular solution ) 通解 ( general solution ):y = yh + yp → y = c1 + c2x + ( c3/x2 ) - ( 8ex/x2 ) + ( 8ex/x ) #* 以上過程僅供參考,如果版主有答案,那麼請對一下答案,如果我算的跟答案一樣,麻煩再寄信跟我講一下,我算對的話一定會比版主還快樂 ^_^
2006-11-25 15:02:06 補充:
抱歉,有看到 u1、u2 的都改為 φ1、φ2,抱歉喔!
2006-11-25 10:00:35 · answer #1 · answered by 龍昊 7 · 0⤊ 0⤋
你答案在
http://www.wretch.cc/album/show.php?i=kuasemd&b=2&f=1542432197&p=1
才給5點
所以給答案
相當合理!
2006-11-30 20:24:10 · answer #2 · answered by ? 3 · 0⤊ 0⤋