English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
所有分類

高等工程數學k版9th的題目
6.(xD^3+4D^2)y=8e^x

2006-11-24 22:26:13 · 2 個解答 · 發問者 Anonymous in 教育與參考 考試

2 個解答

6. ( xD3 + 4D2 ) y = 8exsol:  令:u = D2y → Du = D3y  原式寫成:xDu + 4u = 8ex  → Du + ( 4/x ) u = ( 8ex/x ) ~ 一階線性 o.d.e.  積分因子:I(x) = e∫( 4/x )dx = e 4 ln│x│           = x4  u = ( 1/x4 )(∫8x3exdx + k3 )     = ( 1/x4 )( 8x3ex - 24x2ex + 48xex - 48ex + k3 )     = ( 8ex/x ) - ( 24ex/x2 ) + ( 48ex/x3 ) - ( 48ex/x4 ) + ( k3/x4 )  → D2y = ( 8ex/x ) - ( 24ex/x2 ) + ( 48ex/x3 ) - ( 48ex/x4 ) + ( k3/x4 )  上式為二階線性 o.d.e.  特徵方程式 ( characteristic equation ):r2 = 0  → r = 0 , 0 ~ 重根 ( real double root )  → yh = c1 + c2x ~ 齊次解 ( homogenous solution )  利用參數變異法 ( variation of parameters ) 求特解 yp。  令:Q = ( 8ex/x ) - ( 24ex/x2 ) + ( 48ex/x3 ) - ( 48ex/x4 ) + ( k3/x4 )    yp = φ1y1 + φ2y2 = u1 + u2x  W =│1 x│= 1      │0 1│  φ1 =∫( - y2Q/W )dx    =∫- x [ ( 8ex/x ) - ( 24ex/x2 ) + ( 48ex/x3 ) - ( 48ex/x4 ) + ( c3/x4 ) ]dx    =∫[ - 8ex + ( 24ex/x ) - ( 48ex/x2 ) + ( 48ex/x3 ) - ( k3/x3 ) ]dx    = - 8ex + ( k3/2x2 ) +∫[ ( 24ex/x ) - ( 48ex/x2 ) + ( 48ex/x3 ) ]dx  後面那串積分,用分部積分慢慢搞吧!公式為∫udv = uv -∫vdu  令:u = 48ex     則:du = 48exdx    dv = ( 1/x3 )     v = - ( 1/2x2 )  →∫( 48ex/x3 )dx = - ( 24ex/x2 ) +∫( 24ex/x2 )dx  把上面結果套入∫[ ( 24ex/x ) - ( 48ex/x2 ) + ( 48ex/x3 ) ]dx 這串積分!  得:φ1 = - 8ex + ( k3/2x2 ) - ( 24ex/x2 ) +∫[ ( 24ex/x ) - ( 24ex/x2 ) ]dx  再用分部積分算一次吧!  令:u = - 24ex    則:du = - 24exdx    dv = ( 1/x2 )     v = - ( 1/x )  →∫- ( 24ex/x2 )dx = ( 24ex/x ) -∫( 24ex/x )dx  把上面結果套入∫[ ( 24ex/x ) - ( 48ex/x2 ) + ( 48ex/x3 ) ]dx 這串積分!  得:φ1 = - 8ex + ( k3/2x2 ) - ( 24ex/x2 ) + ( 24ex/x )  φ2 =∫( y1Q/W )dx    =∫[ ( 8ex/x ) - ( 24ex/x2 ) + ( 48ex/x3 ) - ( 48ex/x4 ) + ( k3/x4 ) ]dx    = - ( k3/3x3 ) +∫[ ( 8ex/x ) - ( 24ex/x2 ) + ( 48ex/x3 ) - ( 48ex/x4 ) ]dx  一樣用分部積分慢慢搞吧。  令:u = - 48ex    則:du = - 48exdx    dv = ( 1/x4 )     v = - ( 1/3x3 )  →∫- ( 48ex/x4 ) ]dx = ( 16ex/x3 ) -∫( 16ex/x3 )dx  得:φ2 = - ( k3/3x3 ) + ( 16ex/x3 ) +∫[ ( 8ex/x ) - ( 24ex/x2 ) + ( 32ex/x3 ) ]dx  令:u = 32ex     則:du = 32exdx    dv = ( 1/x3 )      v = - ( 1/2x2 )  →∫( 32ex/x3 )dx = - ( 16ex/x2 ) +∫( 16ex/x2 )dx  得:φ2 = - ( k3/3x3 ) + ( 16ex/x3 ) - ( 16ex/x2 ) +∫[ ( 8ex/x ) - ( 8ex/x2 ) ]dx  令:u = - 8ex     則:du = - 8exdx    dv = ( 1/x2 )      v = - ( 1/x )  →∫- ( 8ex/x2 )dx = ( 8ex/x ) -∫( 8ex/x )dx  得:φ2 = - ( k3/3x3 ) + ( 16ex/x3 ) - ( 16ex/x2 ) + ( 8ex/x )  yp = φ1y1 + φ2y2 = u1 + u2x    = - 8ex + ( k3/2x2 ) - ( 24ex/x2 ) + ( 24ex/x ) - ( k3/3x2 ) + ( 16ex/x2 ) - ( 16ex/x ) + 8ex    = ( k3/6x2 ) - ( 8ex/x2 ) + ( 8ex/x )  令:( k3/6 ) = c3  → yp = ( c3/x2 ) - ( 8ex/x2 ) + ( 8ex/x ) ~ 特解 ( particular solution )  通解 ( general solution ):y = yh + yp  → y = c1 + c2x + ( c3/x2 ) - ( 8ex/x2 ) + ( 8ex/x ) #*  以上過程僅供參考,如果版主有答案,那麼請對一下答案,如果我算的跟答案一樣,麻煩再寄信跟我講一下,我算對的話一定會比版主還快樂 ^_^

2006-11-25 15:02:06 補充:
抱歉,有看到 u1、u2 的都改為 φ1、φ2,抱歉喔!

2006-11-25 10:00:35 · answer #1 · answered by 龍昊 7 · 0 0

你答案在
http://www.wretch.cc/album/show.php?i=kuasemd&b=2&f=1542432197&p=1
才給5點
所以給答案
相當合理!

2006-11-30 20:24:10 · answer #2 · answered by ? 3 · 0 0

fedest.com, questions and answers