10.y''''-16y=128cosh2x,y(0)=1,y'(0)=24,y''(0)=20,y'''(0)=-160
11.(x^3D^3-x^2D^2-7xD+16I)y=9xlnx,y(1)=6,Dy(1)=18,D^2y(1)=65
12.(D^4-26D^2+25I)y=50(x+1)^2,y(0)=12.16,Dy(0)=-6,D^2y(0)=34,D^3y(0)=-130
2006-11-23 15:59:14 · 1 個解答 · 發問者 Anonymous in 教育與參考 ➔ 考試
OK!初值條件就留給我自己代就好了︿︿
2006-11-24 19:35:54 · update #1
版主,跟您商量一下,如果這三題都要把初值條件代入把任意積分常數算出來的話,其內容絕對超過兩千字。
所以有兩個提議,一個是完整、全部算出來,但最多也只能 PO 兩題,另一個是不把初值條件代入,那麼我三題都能 PO,初值條件就留給版主自己代就好了。
不知版主意下如何?
2006-11-25 11:20:54 補充:
10. y'''' - 16y = 128 cosh 2xsol: 128 cosh 2x = 128 [ ( e2x + e - 2x )/2 ] = 64e2x + 64e - 2x → y'''' - 16y = 64e2x + 64e - 2x 特徵方程式:r4 - 16 = 0 → ( r + 2 )( r - 2 )( r2 + 4 ) = 0 → r = - 2 , 2 , ± 2 i ~ 兩相異實根與共軛複根 → yh = c1e - 2x + c2e2x + c3 cos 2x + c4 sin 2x ~ 齊次解 利用未定係數法求特解。 令 yp = Axe2x + Bxe - 2x → yp' = Ae2x + 2Axe2x + Be - 2x - 2Bxe - 2x yp'' = 4Ae2x + 4Axe2x - 4Be - 2x + 4Bxe - 2x yp''' = 12Ae2x + 8Axe2x + 12Be - 2x - 8Bxe - 2x yp'''' = 32Ae2x + 16Axe2x - 32Be - 2x + 16Bxe - 2x yp'''' - 16yp = 64e2x + 64e - 2x → 32Ae2x - 32Be - 2x = 64e2x + 64e - 2x 比較係數得:32A = 64 → A = 2 - 32B = 64 → B = - 2 → yp = 2xe2x - 2xe - 2x ~ 特解 通解:y = c1e - 2x + c2e2x + c3 cos 2x + c4 sin 2x + 2xe2x - 2xe - 2x #*11. ( x3D3 - x2D2 - 7xD + 16I ) y = 9 x ln xsol: 令 x = et → t = ln x → Dy = ( dy/dx ) = ( dt/dx )( dy/dt ) = ( 1/x )( dy/dt ) D2y = ( d2y/dx2 ) = ( d/dx )[ ( 1/x )( dy/dt ) ] = ( 1/x2 )( d2y/dt2 ) - ( 1/x2 )( dy/dt ) D3y = ( d3y/dx3 ) = ( d/dx )[ ( 1/x2 )( d2y/dt2 ) - ( 1/x2 )( dy/dt ) ] = ( 1/x3 )( d3y/dt3 ) - ( 3/x3 )( d2y/dt2 ) + ( 2/x3 )( dy/dt ) 原 D.E. 化為:( d3y/dt3 ) - 4( d2y/dt2 ) - 4( dy/dt ) + 16y = 9tet 上式為一簡單的高階 o.d.e.。 特徵方程式:r3 - 4r2 - 4r + 16 = 0 → ( r + 2 )( r - 2 )( r - 4 ) = 0 → r = - 2 , 2 , 4 ~ 三相異實根 → yh = c1e - 2t + c2e2t + c3e4t = c1x - 2 + c2x2 + c3x4 ~ 齊次解 利用未定係數法求特解。 令 yp = ( At + B )et → ( dyp/dt ) = Aet + ( At + B )et ( d2yp/dt2 ) = 2Aet + ( At + B )et ( d3yp/dt3 ) = 3Aet + ( At + B )et ( d3yp/dt3 ) - 4( d2yp/dt2 ) - 4( dyp/dt ) + 16yp = 9tet → - 9Aet + 9( At + B )et = 9tet 比較係數得:9A = 9 → A = 1 - 9A + 9B = 0 → B = 1 → yp = ( 1 + t )et = ( 1 + ln x ) x ~ 特解 通解:y = c1x - 2 + c2x2 + c3x4 + ( 1 + ln x ) x #*12. ( D4 - 26D2 + 25I ) y = 50( x + 1 )2sol: 原式為:( D4 - 26D2 + 25I ) y = 50x2 + 100x + 50 特徵方程式:r4 - 26r2 + 25 = 0 → ( r2 + 1 )( r2 + 25 ) = 0 → r = ± i , ± 5 i ~ 共軛複根 → yh = c1 cos x + c2 sin x + c3 cos 5x + c4 sin 5x ~ 齊次解 利用未定係數法求特解。 令 yp = Ax2 + Bx + C → Dyp = 2Ax + B D2yp = 2A D3yp = D4yp = 0 ( D4 - 26D2 + 25I ) yp = 50x2 + 100x + 50 → - 52A + 25Ax2 + 25Bx + 25C = 50x2 + 100x + 50 比較係數得:25A = 50 → A = 2 25B = 100 → B = 4 - 52A + 25C = 50 → C = 6.16 → yp = 2x2 + 4x + 6.16 ~ 特解 通解:y = c1 cos x + c2 sin x + c3 cos 5x + c4 sin 5x + 2x2 + 4x + 6.16 #* 希望以上回答能幫助您。
2006-11-25 06:20:54 · answer #1 · answered by 龍昊 7 · 0⤊ 0⤋