1.解 y" + 3y' + 2y = 8x+8
2.解 y' + 2xy = 4x , y(0) = 1
3.解 x²y" + 6xy' + 4y = 0 , y(1) = 1 , y'(1) = 2
題目請看清楚再解答唷 儘快><
2006-11-07 04:49:56 · 1 個解答 · 發問者 B.I.O 1 in 教育與參考 ➔ 考試
次方的打法 請在word裡面輸入 把要變成次方的字反白然後 從 格式----字型---選擇 "上標" 再貼回來就ok了
2006-11-07 05:08:04 · update #1
1. y'' + 3y' + 2y = 8x + 8sol: 特徵方程式 ( characteristic equation ):r2 + 3r + 2 = 0 → ( r + 1 )( r + 2 ) = 0 → r = - 1 , - 2 ~ 相異實根 → yh = c1e - x + c2e - 2x ~ 齊次解 ( homogenous solution ) 利用未定係數法 ( method of undetermined coefficient ) 求特解 yp。 令 yp = Ax + B → yp' = A yp'' = 0 yp'' + 3yp' + 2yp =8x + 8 → 2Ax + ( 3A + 2B ) = 8x + 8 比較係數得:2A = 8 → A = 4 3A + 2B = 8 → B = - 2 → yp = 4x - 2 ~ 特解 ( particular solution ) 通解 ( general solution ):y = yh + yp → y = c1e - x + c2e - 2x + 4x - 2 #*2. y' + 2xy = 4x , y(0) = 1sol: 原式為一階線性 o.d.e.,必有一積分因子如下: I(x) = e∫2xdx = ex^2 解為:y = e - x^2 (∫4xex^2dx + c ) = e - x^2 [∫2ex^2d( x2 ) + c ] = e - x^2 [ 2ex^2 + c ] = 2 + ce - x^2 → y = 2 + ce - x^2 y(0) = 1 → x = 0 , y = 1 → 1 = 2 + ce0 → c = - 1 → y = 2 - e - x^2 #*3. x2y'' + 6xy' + 4y = 0 , y(1) = 1 , y'(1) = 2sol: 原式為標準的 Cauchy - Euler 方程式,以標準的方法解。 令 y = xm → y' = m x m - 1 y'' = m( m - 1 ) x m - 2 將 y、y'、y'' 代回 x2y'' + 6xy' + 4y = 0 得:m( m - 1 ) x m + 6m x m + 4xm = 0 → [ m( m - 1 ) + 6m + 4 ] xm = 0 → m( m - 1 ) + 6m + 4 = 0 → m2 + 5m + 4 = 0 ~ 輔助方程式 ( auxiliary equation ) → ( m + 1 )( m + 4 ) = 0 → m = - 1 , - 4 ~ 相異實根 → y = c1x - 1 + c2x - 4 y(1) = 1 → x = 1 , y = 1 → c1 + c2 = 1 y' = - c1x - 2 - 4c2x - 5 y'(1) = 2 → x = 1 , y = 2 → - c1 - 4c2 = 2 解 c1、c2 得:c1 = 2、c2 = - 1 → y = 2x - 1 - x - 4 #* 希望以上回答能幫助您。
2006-11-07 12:05:02 · answer #1 · answered by 龍昊 7 · 0⤊ 0⤋