(3x+2)的4次方怎麼用"公式"解...?
謝謝''
2006-10-31 04:18:22 · 2 個解答 · 發問者 Anonymous in 教育與參考 ➔ 考試
公式:(a+b)4=a4+4a3b+6a2b2+4ab3+b4所以:(3x+2)4=(3x)4+4(3x)3(2)+6(3x)2(2)2+4(3x)(2)3+(2)4=81x4+216x3+216x2+96x+16
2006-10-31 10:02:55 補充:
(a+b)^n公式中的係數:......................1..............................................11........................n=2時..........121.......................n=3時.........1331......................n=4時........14641.....................然後按照 a 的降冪、b的升冪排列就可以了。
2006-10-31 10:04:23 補充:
如果是(a-b)^n,變成[a+(-b)]^n就可以帶上面的公式了。
2006-10-31 04:26:29 · answer #1 · answered by ~~初學者六級~~ 7 · 0⤊ 0⤋
你應該是要用完全平方和的公式八
(a+b)^2=a^2+2ab+b^2 及 (a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca
(3x+2)^4
=[(3x+2)^2]^2
=[9x^2+12x+4]^2
=(9x^2)^2+(12x)^2+(4)^2+2*9x^2*12x+2*12x*4+2*4*9x^2
=81x^4+144x^2+16+216x^3+96x+72x^2
=81x^4+216x^3+216x^2+96x+16
至於(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac的公式
是[a+(b+c)]^2
=a^2+2*a*(b+c)+(b+c)^2
=a^2+2ab+2ac+b^2+2bc+c^2
=a^2+b^2+c^2+2ab+2bc+2ca
2006-10-31 13:24:16 · answer #2 · answered by 誌良 4 · 0⤊ 0⤋