English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
所有分類

1.(D^2+4I)y=cosh2x
2.(x^2*D^2+xD-1/4I)y=3x^(-1)+3x
3.(x^2*D^2-2xD+2I)y=x^3sinx
4.(x^2*D^2+xD-4I)y=1/(x^2)
5.(D^2+I)y=secx-10sin5x

2006-10-31 15:27:36 · 1 個解答 · 發問者 Anonymous in 教育與參考 考試

1 個解答

1. ( D2 + 4I ) = cosh 2xsol:  yh = c1cos 2x + c2sin 2x ~ homogenous solution  Let Q = cosh 2x     yp = u1y1 + u2y2 = u1 cos 2x + u2 sin 2x  W =│ cos 2x sin 2x │= 2      │- 2 sin 2x 2 cos 2x│  u1 =∫( - y2Q/W )dx    = ( - 1/2 )∫( sin 2x cosh 2x )dx    = ( 1/8 )( cosh 2x cos 2x - sinh 2x sin 2x )  u2 =∫( y1Q/W )dx    = ( 1/2 )∫( cos 2x cosh 2x )dx    = ( 1/8 )( cosh 2x sin 2x + sinh 2x cos 2x )  yp = u1 cos 2x + u2 sin 2x    = ( 1/8 )( cosh 2x cos2 2x - sinh 2x cos 2x sin 2x + cosh 2x sin2 2x + sinh 2x sin 2x cos 2x )    = ( 1/8 )( cosh 2x )  → yp = ( 1/8 )( cosh 2x ) ~ particular solution*2. ( x2D2 + xD - 0.25I ) y = 3x - 1 + 3xsol:  yh = c1x - 0.5 + c2x 0.5 ~ homogenous solution  Let Q = 3x - 3 + 3x - 1      yp = u1y1 + u2y2 = u1 x - 0.5 + u2 x 0.5  W =│ x - 0.5   x 0.5  │= x - 1      │- 0.5x - 1.5 0.5x - 0.5│  u1 =∫( - y2Q/W )dx    =∫[ - x 0.5( 3x - 3 + 3x - 1 )/x - 1 ]dx    =∫- ( 3x - 1.5 + 3x - 0.5 )dx    = 6x - 0.5 - 6x 0.5  u2 =∫( y1Q/W )dx   =∫[ x - 0.5( 3x - 3 + 3x - 1 )/x - 1 ]dx   =∫( 3x - 2.5 + 3x - 0.5 )dx   = - 2x - 1.5 + 6x 0.5  yp = u1 x - 0.5 + u2 x 0.5    = 6x - 1 - 6 - 2x - 1 + 6x    = 4x - 1 + 6x - 6  → yp = 4x - 1 + 6x - 6 ~ particular solution*3. ( x2D2 - 2xD + 2I ) y = x3 sin xsol:  yh = c1x + c2x2 ~ homogenous solution  Let Q = x sin x      yp = u1y1 + u2y2 = u1 x + u2 x2  W =│x x2 │= x2      │1 2x│  u1 =∫( - y2Q/W )dx    =∫- x sin x dx    = x cos x + sin x  u2 =∫( y1Q/W )dx    =∫sin x dx    = - cos x  yp = u1 x + u2 x2    = x2 cos x + x sin x - x2 cos x    = x sin x  → yp = x sin x ~ particular solution*4. ( x2D2 + xD - 4 ) y = ( 1/x2 )sol:  yh = c1x - 2 + c2x2 ~ homogenous solution  Let Q = ( 1/x4 )      yp = u1y1 + u2y2 = u1 x - 2 + u2 x2  W =│ x - 2 x2 │= 4x - 1      │- 2x - 3 2x│  u1 =∫( - y2Q/W )dx    = - ( 1/4 )∫( 1/x )dx    = - ( 1/4 ) ln│x│  u2 =∫( y1Q/W )dx    = ( 1/4 )∫( 1/x5 )dx    = - ( 1/16 ) x - 4  yp = u1 x - 2 + u2 x2    = - ( x - 2/4 ) ln│x│- ( x - 2/16 )  → yp = - ( x - 2/4 ) ln│x│- ( x - 2/16 ) ~ particular solution*  貼四題的量已經是極限了,我認為是系統的問題,因為應該還不到兩千字,我都故意只寫特解求法,但還是超過字數,其實這幾題重點是在用參數變異法算特解,齊次解您一定會算了,通解不過是齊次解與通解相加。*  希望以上回答能幫助您。

2006-11-01 20:03:29 · answer #1 · answered by 龍昊 7 · 0 0

fedest.com, questions and answers