1.x^2y''-4xy'+6y=0,y(1)=1,y'(1)=0
2.x^2y''+3xy'+y=0,y(1)=4,y'(1)=-2
3.(x^2D^2+2xD+100.25I)y=0,y(1)=2,y'(1)=-11
4.(x^2D^2-2xD+2.25I)y=0,y(1)=2.2,y'(1)=2.5
5.(xD^2+4D)y=0,y(1)=12,y'(1)=-6
工程數學的高手們請幫忙我解詳解了,謝謝大家。
2006-10-28 16:07:14 · 1 個解答 · 發問者 Anonymous in 教育與參考 ➔ 考試
我也不清處耶~
我是看Kreyszig原文書裡的2.5章節練習題裡面寫的。
Y(x)=C1y1(x)+C2y2(x)
2006-10-28 23:33:08 · update #1
( x^2D^2 + 2xD + 100.25I )y = 0
I 是什麼?
2006-10-29 11:03:12 補充:
我剛翻了一下 Kreyszig 的工數,並沒有 I 這個東西,不過我把 I 當 1 來處理好了。
2006-10-29 11:46:04 補充:
1. x2y'' - 4xy' + 6y = 0 , y(1) = 1 , y'(1) = 0sol: 令 y = xm 代入得:m( m - 1 ) - 4m + 6 = 0 → m2 - 5m + 6 = 0 ~ 特徵方程式 ( characteristic equation ) → m = 2 , 3 ~ 相異實根 → y = c1x2 + c2x3 y(1) = 1 → c1 + c2 = 1 y' = 2c1x + 3c2x2 y'(1) = 0 → 2c1 + 3c2 = 0 解得:c1 = 3、c2 = - 2 → y = 3x2 - 2x3 #*2. x2y'' + 3xy' + y = 0 , y(1) = 4 , y'(1) = - 2sol: 令 y = xm 代入得:m( m - 1 ) + 3m + 1 = 0 → m2 + 2m + 1 = 0 ~ 特徵方程式 ( characteristic equation ) → m = - 1 , - 1 ~ 重根 → y = ( c1 + c2 ln x ) x - 1 y(1) = 4 → c1 = 4 y' = ( c2x - 1 ) x - 1 - ( c1 + c2 ln x ) x - 2 y'(1) = - 2 → c2 - c1 = - 2 → c2 = 2 → y = ( 4 + 2 ln x ) x - 1 , x > 0 #*3. ( x2D2 + 2xD + 100.25 ) y = 0 , y(1) = 2 , y'(1) = - 11sol: 令 y = xm 代入得:m( m - 1 ) + 2m + 100.25 = 0 → m2 + m + 100.25 = 0 ~ 特徵方程式 ( characteristic equation ) → m = - 0.5 ± 10 i ~ 共軛複根 → y = x - 0.5 ( c1cos 10 ln x + c2sin 10 ln x ) y(1) = 2 → c1 = 2 y' = - 0.5x - 0.5 ( c1cos 10 ln x + c2sin 10 ln x ) + x - 0.5 ( - x - 1c1sin 10 ln x + x - 1c2cos 10 ln x ) y'(1) = - 11 → - 0.5c1 + c2 = - 11 → c2 = - 10 → y = x - 0.5 ( 2 cos 10 ln x - 10 sin 10 ln x ) , x > 0 #*4. ( x2D2 - 2xD + 2.25 ) y = 0 , y(1) = 2.2 , y'(1) = 2.5sol: 令 y = xm 代入得:m( m - 1 ) - 2m + 2.25 = 0 → m2 - 3m + 2.25 = 0 ~ 特徵方程式 ( characteristic equation ) → m = 1.5 , 1.5 ~ 重根 → y = ( c1 + c2 ln x ) x 1.5 y(1) = 2.2 → c1 = 2.2 y' = ( c2x - 1 ) x 1.5 + 1.5( c1 + c2 ln x ) x 0.5 y'(1) = 2.5 → c2 + 1.5c1 = 2.5 → c2 = - 0.8 → y = ( 2.2 - 0.8 ln x ) x 1.5 , x > 0 #*5. ( x2D2 + 4D ) y = 0 , y(1) = 12 , y'(1) = - 6sol: 令 y = xm 代入得:m( m - 1 ) + 4m = 0 → m2 + 3m = 0 ~ 特徵方程式 ( characteristic equation ) → m = 0 , - 3 ~ 相異實根 → y = c1 + c2x - 3 y(1) = 12 → c1 + c2 = 12 y' = - 3c2x - 4 y'(1) = - 6 → - 3c2 = - 6 → c2 = 2 又:c1 + c2 = 12 → c1 = 10 → y = 10 + 2x - 3 #* 希望以上回答能幫助您。
2006-10-29 06:46:04 · answer #1 · answered by 龍昊 7 · 0⤊ 0⤋