English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
所有分類

有幾題我不會算想問一下大大 請詳細解答過程便選為最佳答案3q
1. 2cos(x+y)-2xsin(x+y)-2xsin(x+y)y'=0
2. 2y-y^2{{sec(xy^2)}^2}+ (2x-2xysec^2(xy^2))y'=0 ; y(1)=2 求解初值
第2題開頭是指2y減y平方再乘上 {sec(xy^2)}^2喔
3. xcos(2y-x)-sin(2y-x)-2xcos(2y-x)y'=0 ; y(pi/12)=pi/8求解初值

第2題可能並不是正合,而第3題pai的符號我不會打用pi表示
pi=3.14159喔 pi指徑度

2006-10-26 07:32:05 · 1 個解答 · 發問者 eric 7 in 教育與參考 考試

1 個解答

1. 2 cos( x + y ) - 2x sin( x + y ) - 2x sin( x + y ) y' = 0sol:  由原式得:[ 2 cos( x + y ) - 2x sin( x + y ) ]dx - 2x sin( x + y )dy = 0  令 M( x , y ) = 2 cos( x + y ) - 2x sin( x + y )    N( x , y ) = - 2x sin( x + y )  ( ∂M/∂y ) = - 2 sin( x + y ) - 2x cos( x + y )  ( ∂N/∂x ) = - 2 sin( x + y ) - 2x cos( x + y )  ( ∂M/∂y ) = ( ∂N/∂x ) → 正合 ( exact )  若正合,必有一解,其型式為:F( x , y ) = C  F =∫Ndy + c(x) =∫- 2x sin( x + y )dy + c(x)     = 2x cos( x + y ) + c(x)  ( ∂F/∂x ) = M  → 2 cos( x + y ) - 2x sin( x + y ) + c'(x) = 2 cos( x + y ) - 2x sin( x + y )  → c'(x) = 0 → c(x) = 0  → 2x cos( x + y ) = C #*2. 2y - y2( sec xy2 ) + ( 2x - 2xy sec2 xy2 ) y' = 0,y(1) = 2sol:  由原式得:( 2y - y2 sec2 xy2 )dx + ( 2x - 2xy sec2 xy2 )dy = 0  令 M( x , y ) = 2y - y2 sec2 xy2    N( x , y ) = 2x - 2xy sec2 xy2  ( ∂M/∂y ) = 2 - 2y sec2 xy2 - 2xy3 tan xy2 sec2 xy2  ( ∂N/∂x ) = 2 - 2y sec2 xy2 - 2xy3 tan xy2 sec2 xy2  ( ∂M/∂y ) = ( ∂N/∂x ) → 正合 ( exact )  若正合,必有一解,其型式為:F( x , y ) = C  F =∫Ndy + c(x) =∫( 2x - 2xy sec2 xy2 )dy + c(x)     = 2xy -∫( 2xy sec2 xy2 )dy + c(x)     = 2xy - x∫( sec2 xy2 )d( y2 ) + c(x)     = 2xy - tan xy2 + c(x)  ( ∂F/∂x ) = M  → 2y - y2 sec2 xy2 + c'(x) = 2y - y2 sec2 xy2  → c'(x) = 0 → c(x) = 0  → 2xy - tan xy2 = C  y(1) = 2 → x = 1 , y = 2  → 4 - tan 4 = C  → 2xy - tan xy2 = 4 - tan 4 #*3. x cos( 2y - x ) - sin( 2y - x ) - 2x cos( 2y - x ) y',y( π/12 ) = ( π/8 ) sol:  由原式得:[ x cos( 2y - x ) - sin( 2y - x ) ]dx - 2x cos( 2y - x )dy = 0  令 M( x , y ) = x cos( 2y - x ) - sin( 2y - x )    N( x , y ) = - 2x cos( 2y - x )  ( ∂M/∂y ) = - 2x sin( 2y - x ) - 2 cos( 2y - x )  ( ∂N/∂x ) = - 2 cos( 2y - x ) - 2x sin( 2y - x )  ( ∂M/∂y ) = ( ∂N/∂x ) → 正合 ( exact )  若正合,必有一解,其型式為:F( x , y ) = C  F =∫Ndy + c(x) =∫- 2x cos( 2y - x )dy + c(x)     = - x sin( 2y - x ) + c(x)  ( ∂F/∂x ) = M  → - sin( 2y - x ) + x cos( 2y - x ) + c'(x) = x cos( 2y - x ) - sin( 2y - x )  → c'(x) = 0 → c(x) = 0  → - x sin( 2y - x ) = c1 → x sin( 2y - x ) = - c1  令 - c1 = C → x sin( 2y - x ) = C  y( π/12 ) = ( π/8 ) → x = ( π/12 ) , y = ( π/8 )  → ( π/12 ) sin( π/6 ) = C  → C = ( π/24 )  → 2x cos( x + y ) = ( π/24 ) #*  希望以上回答能幫助您。

2006-10-26 15:41:32 · answer #1 · answered by 龍昊 7 · 0 0

fedest.com, questions and answers