有幾題我不會算想問一下大大 請詳細解答過程便選為最佳答案3q
1. 2cos(x+y)-2xsin(x+y)-2xsin(x+y)y'=0
2. 2y-y^2{{sec(xy^2)}^2}+ (2x-2xysec^2(xy^2))y'=0 ; y(1)=2 求解初值
第2題開頭是指2y減y平方再乘上 {sec(xy^2)}^2喔
3. xcos(2y-x)-sin(2y-x)-2xcos(2y-x)y'=0 ; y(pi/12)=pi/8求解初值
第2題可能並不是正合,而第3題pai的符號我不會打用pi表示
pi=3.14159喔 pi指徑度
2006-10-26 07:32:05 · 1 個解答 · 發問者 eric 7 in 教育與參考 ➔ 考試
1. 2 cos( x + y ) - 2x sin( x + y ) - 2x sin( x + y ) y' = 0sol: 由原式得:[ 2 cos( x + y ) - 2x sin( x + y ) ]dx - 2x sin( x + y )dy = 0 令 M( x , y ) = 2 cos( x + y ) - 2x sin( x + y ) N( x , y ) = - 2x sin( x + y ) ( ∂M/∂y ) = - 2 sin( x + y ) - 2x cos( x + y ) ( ∂N/∂x ) = - 2 sin( x + y ) - 2x cos( x + y ) ( ∂M/∂y ) = ( ∂N/∂x ) → 正合 ( exact ) 若正合,必有一解,其型式為:F( x , y ) = C F =∫Ndy + c(x) =∫- 2x sin( x + y )dy + c(x) = 2x cos( x + y ) + c(x) ( ∂F/∂x ) = M → 2 cos( x + y ) - 2x sin( x + y ) + c'(x) = 2 cos( x + y ) - 2x sin( x + y ) → c'(x) = 0 → c(x) = 0 → 2x cos( x + y ) = C #*2. 2y - y2( sec xy2 ) + ( 2x - 2xy sec2 xy2 ) y' = 0,y(1) = 2sol: 由原式得:( 2y - y2 sec2 xy2 )dx + ( 2x - 2xy sec2 xy2 )dy = 0 令 M( x , y ) = 2y - y2 sec2 xy2 N( x , y ) = 2x - 2xy sec2 xy2 ( ∂M/∂y ) = 2 - 2y sec2 xy2 - 2xy3 tan xy2 sec2 xy2 ( ∂N/∂x ) = 2 - 2y sec2 xy2 - 2xy3 tan xy2 sec2 xy2 ( ∂M/∂y ) = ( ∂N/∂x ) → 正合 ( exact ) 若正合,必有一解,其型式為:F( x , y ) = C F =∫Ndy + c(x) =∫( 2x - 2xy sec2 xy2 )dy + c(x) = 2xy -∫( 2xy sec2 xy2 )dy + c(x) = 2xy - x∫( sec2 xy2 )d( y2 ) + c(x) = 2xy - tan xy2 + c(x) ( ∂F/∂x ) = M → 2y - y2 sec2 xy2 + c'(x) = 2y - y2 sec2 xy2 → c'(x) = 0 → c(x) = 0 → 2xy - tan xy2 = C y(1) = 2 → x = 1 , y = 2 → 4 - tan 4 = C → 2xy - tan xy2 = 4 - tan 4 #*3. x cos( 2y - x ) - sin( 2y - x ) - 2x cos( 2y - x ) y',y( π/12 ) = ( π/8 ) sol: 由原式得:[ x cos( 2y - x ) - sin( 2y - x ) ]dx - 2x cos( 2y - x )dy = 0 令 M( x , y ) = x cos( 2y - x ) - sin( 2y - x ) N( x , y ) = - 2x cos( 2y - x ) ( ∂M/∂y ) = - 2x sin( 2y - x ) - 2 cos( 2y - x ) ( ∂N/∂x ) = - 2 cos( 2y - x ) - 2x sin( 2y - x ) ( ∂M/∂y ) = ( ∂N/∂x ) → 正合 ( exact ) 若正合,必有一解,其型式為:F( x , y ) = C F =∫Ndy + c(x) =∫- 2x cos( 2y - x )dy + c(x) = - x sin( 2y - x ) + c(x) ( ∂F/∂x ) = M → - sin( 2y - x ) + x cos( 2y - x ) + c'(x) = x cos( 2y - x ) - sin( 2y - x ) → c'(x) = 0 → c(x) = 0 → - x sin( 2y - x ) = c1 → x sin( 2y - x ) = - c1 令 - c1 = C → x sin( 2y - x ) = C y( π/12 ) = ( π/8 ) → x = ( π/12 ) , y = ( π/8 ) → ( π/12 ) sin( π/6 ) = C → C = ( π/24 ) → 2x cos( x + y ) = ( π/24 ) #* 希望以上回答能幫助您。
2006-10-26 15:41:32 · answer #1 · answered by 龍昊 7 · 0⤊ 0⤋