還要計算通解才選最佳答案
1. (6x^2)y+12xy+y^2+(6x^2+2y)y'=0 求積分因子和通解
2. 4xy+6y^2+(2x^2+6xy)y'=0 求積分因子和通解
3. 2((y^3)-2)+3xy^2y'=0 ; y(3)=1 求積分因子和通解和初值問題之解
4. y(1+x)+2xy'=0 ; y(4)=6 求積分因子和通解和初值問題之解
5. 2xy+3y'=0 ; y(0)=4 求積分因子和通解和初值問題之解
請計算整個過程3q
2006-10-26 13:30:15 · 2 個解答 · 發問者 eric 7 in 教育與參考 ➔ 考試
1. 6x2y + 12xy + y2 + ( 6x2 + 2y ) y' = 0sol: 原式移項得:( 6x2y + 12xy + y2 )dx + ( 6x2 + 2y )dy = 0 令 M( x , y ) = 6x2y + 12xy + y2 N( x , y ) = 6x2 + 2y ( ∂M/∂y ) = 6x2 + 12x + 2y ( ∂N/∂x ) = 12x ( ∂M/∂y ) ≠ ( ∂N/∂x ) → 非正合,找積分因子 ƒ(x) = [ ( ∂M/∂y ) - ( ∂N/∂x ) ]/N = ( 6x2 + 2y )/( 6x2 + 2y ) = 1 積分因子:I(x) = e∫ƒdx = ex 將積分因子乘入 D.E. → IMdx + INdy = 0 → ( 6x2exy + 12xexy + y2ex )dx + ( 6x2ex + 2yex )dy = 0 令 P( x , y ) = 6x2exy + 12xexy + y2ex Q( x , y ) = 6x2ex + 2yex ( ∂P/∂y ) = 6x2ex + 12xex + 2yex ( ∂Q/∂x ) = 12xex + 6x2ex + 2yex ( ∂P/∂y ) = ( ∂Q/∂x ) → 正合 ( exact ) F =∫Qdy + c(x) =∫( 6x2ex + 2yex )dy + c(x) = 6x2exy + y2ex + c(x) ( ∂F/∂x ) = P → 12xexy + 6x2exy + y2ex + c'(x) = 6x2exy + 12xexy + y2ex → c'(x) = 0 → c(x) = 0 → 6x2exy + y2ex = C #**4. y( 1 + x ) + 2xy' = 0,y(4) = 6sol: 原式移項得:y( 1 + x )dx + 2xdy = 0 令 M( x , y ) = y( 1 + x ) N( x , y ) = 2x ( ∂M/∂y ) = 1 + x ( ∂N/∂x ) = 2 ( ∂M/∂y ) ≠ ( ∂N/∂x ) → 非正合,找積分因子 ƒ(x) = [ ( ∂M/∂y ) - ( ∂N/∂x ) ]/N = ( x - 1 )/2x = ( 1/2 ) - ( 1/2x ) 積分因子:I(x) = e∫ƒdx = e∫[ ( 1/2 ) - ( 1/2x ) ]dx = e ( x/2 ) e ( - 1/2 ) ln│x│ = e ( x/2 ) x ( - 1/2 ) 將積分因子乘入 D.E. → IMdx + INdy = 0 → y [ e ( x/2 ) x ( - 1/2 ) + e ( x/2 ) x ( 1/2 ) ]dx + 2e ( x/2 ) x ( 1/2 )dy = 0 令 P( x , y ) = y [ e ( x/2 ) x ( - 1/2 ) + e ( x/2 ) x ( 1/2 ) ] Q( x , y ) = 2e ( x/2 ) x ( 1/2 ) ( ∂P/∂y ) = e ( x/2 ) x ( - 1/2 ) + e ( x/2 ) x ( 1/2 ) ( ∂Q/∂x ) = e ( x/2 ) x ( 1/2 ) + e ( x/2 ) x ( - 1/2 ) ( ∂P/∂y ) = ( ∂Q/∂x ) → 正合 ( exact ) F =∫Qdy + c(x) =∫2e ( x/2 ) x ( 1/2 )dy + c(x) = 2ye ( x/2 ) x ( 1/2 ) + c(x) ( ∂F/∂x ) = P → ye ( x/2 ) x ( - 1/2 ) + ye ( x/2 ) x ( 1/2 ) + c'(x) = y [ e ( x/2 ) x ( - 1/2 ) + e ( x/2 ) x ( 1/2 ) ] → c'(x) = 0 → c(x) = 0 → 2ye ( x/2 ) x ( 1/2 ) = C y(4) = 6 → x = 4 , y = 6 → C = 24e2 → 2ye ( x/2 ) x ( 1/2 ) = 24e2 #*5. 2xy + 3y' = 0 , y(0) = 4sol: 原式移項得:2xydx + 3dy = 0 令 M( x , y ) = 2xy N( x , y ) = 3 ( ∂M/∂y ) = 2x ( ∂N/∂x ) = 0 ( ∂M/∂y ) ≠ ( ∂N/∂x ) → 非正合,找積分因子 ƒ(x) = [ ( ∂M/∂y ) - ( ∂N/∂x ) ]/N = ( 2x/3 ) 積分因子:I(x) = e∫ƒdx = e∫( 2x/3 )dx = exp( x2/3 ) 將積分因子乘入 D.E. → IMdx + INdy = 0 → 2xy exp( x2/3 )dx + 3 exp( x2/3 )dy = 0 令 P( x , y ) = 2xy exp( x2/3 ) Q( x , y ) = 3 exp( x2/3 ) ( ∂P/∂y ) = 2x exp( x2/3 ) ( ∂Q/∂x ) = 2x exp( x2/3 ) ( ∂P/∂y ) = ( ∂Q/∂x ) → 正合 ( exact ) F =∫Qdy + c(x) =∫3 exp( x2/3 )dy + c(x) = 3y exp( x2/3 ) + c(x) ( ∂F/∂x ) = P → 2xy exp( x2/3 ) + c'(x) = 2xy exp( x2/3 ) → c'(x) = 0 → c(x) = 0 → 3y exp( x2/3 ) = C y(0) = 4 → x = 0 , y = 4 → C = 12 → 3y exp( x2/3 ) = 12 #* 因為回答內容會超過兩千字,系統不給 PO 文,而我第 2.、3. 算到一半又算不出來,所以把第 2.、3. 的計算過程刪除,抱歉囉!希望以上回答能幫助您。
2006-10-26 19:49:22 · answer #1 · answered by 龍昊 7 · 0⤊ 0⤋
到下面的網址看看吧
▶▶http://qaz331.pixnet.net/blog
2014-11-12 14:33:21 · answer #2 · answered by Anonymous · 0⤊ 0⤋