1.設-3,a,b三數成等差數列,a,b,17成等比數列,試求a,b的值。
2.設a,b,c,d四正數成等比級數列,若a+b=8,c+d=72,試求公比r的值。
3.有三數成等差級數列,其和為36,若個數依序加1,4,43後則成等比級數列,試求此三數。
4.設n為自然數,且x^2+(2n+1)x+n^2=0之兩根為An,Bn試求1/(A3+1)(B3+1)+1/(A4+1)(B4+1)+.....+1/(A10+1)(B10+1)的和。
5.設a,b,c,d級數列且公比r≠±1,試求2a-3b/a-c + 3c-2d/b-d 的值。
2006-10-26 12:48:46 · 1 個解答 · 發問者 Nathan 1 in 教育與參考 ➔ 其他:教育
(1)答案:a= [15+4(根號35)]/8或[15-4(根號35)]/8b=[27+4(根號35)]/4或[27+4(根號35)]/42a = b+(-3).....(等差).....(1)b2 = 17*a.......(等比).....(2)由(1) a = [b+(-3)]/2 代入(2)b2 = 17*[b+(-3)]/2 → 2b2-17b+51=0 →b=[27+4(根號35)]/4或[27+4(根號35)]/4→a=[15+4(根號35)]/8或[15-4(根號35)]/8(2)答案:3或-3令 a,b,c,d 為 a,ar,ar2,ar3,則:a + ar = 8 ar2 + ar3 = 72 → (a + ar)r2 = 72 → r2 = 9 r = 3 或 -3(3)答案:3,12,21或63,12,-39<<三數成等差級數列,其和為36>>則此三數可設為 12-d,12,12+d<<依序加1,4,43後則成等比級數列>>故 (12+4)2 = [(12-d)+1][(12+d)+43]d2+42d-459=0 → (d+51)(d-9)=0 → d = 9或-51<<此三數為 12-9,12,12+9 或 12+51,12,12-51>>故為 3,12,21或63,12,-39(4)答案:4[(1/62)+(1/82)+(1/102)+...+(1/202)]x2+(2n+1)x+n2=0之兩根為[(-2n-1)+(根號4n+1)]/2及[(-2n-1)-(根號4n+1)]/21/(A3+1)(B3+1)+1/(A4+1)(B4+1)+.....+1/(A10+1)(B10+1)= (4/36)+(4/64)+(4/100)+(4/144)+(4/196)+(4/256)+(4/340)+(4/400)=4[(1/62)+(1/82)+(1/102)+...+(1/202)](5)答案:2設a,b,c,d為a,ar,ar2,ar3。則:[(2a-3b)/(a-c)] + [(3c-2d)/(b-d)]= [(2a-3ar)/(a-ar2)] + [(3ar2-2ar3)/(ar-ar3)]= [(2a-3ar)/(a-ar2)] + [(3ar-2ar2)/(a-ar2)]=(2a-3ar+3ar-2ar2)/(a-ar2)]=2(a-ar2)/(a-ar2)=2
2006-10-27 13:02:56 補充:
(4)答案:4[(1/6^2)+(1/8^2)+(1/10^2)+...+(1/20^2)]=[(1/3^2)+(1/4^2)+(1/5^2)+...+(1/10^2)]
2006-10-27 07:55:02 · answer #1 · answered by ~~初學者六級~~ 7 · 0⤊ 0⤋