哪位大大可以幫我解這題!! X^2 * Y" - 4X*Y' + 6Y = X^2 - X
2006-10-22 19:14:35 · 1 個解答 · 發問者 舜民 2 in 教育與參考 ➔ 考試
感謝唷!!^^
2006-10-22 21:38:00 · update #1
Problem:Solve x2y'' - 4xy' + 6y = x2 - xsol: 這題是標準的 Cauchy - Euler 方程式,我們可以用簡單的方式來算。 令 x = et → t = ln│x│ y' = ( dy/dx ) = ( dt/dx )( dy/dt ) = ( 1/x )( dy/dt ) y'' = ( d/dx )( 1/x )( dy/dt ) = ( 1/x2 )( d2y/dt2 ) - ( 1/x )( dy/dt ) 將 x = et、y'、y'' 代回 x2y'' - 4xy' + 6y = x2 - x 可得一新 o.d.e. → ( d2y/dt2 ) - 5( dy/dt ) + 6y = e2t - et 特徵方程式 ( characteristic equation ):r2 - 5r + 6 = 0 → ( r - 2 )( r - 3 ) = 0 → r = 2 , 3 ~ 相異實根 → yh = c1e2t + c2e3t = c1x2 + c2x3 ~ 齊次解 ( homogenous solution ) 利用未定係數法 ( method of undetermined coefficient ) 求特解 yp。 令 yp = Ate2t + Bet → ( dyp/dt ) = Ae2t + 2Ate2t + Bet ( d2yp/dt2 ) = 4Ae2t + 4Ate2t + Bet ( d2yp/dt2 ) - 5( dyp/dt ) + 6yp = e2t - et → - Ae2t + 2Bet = e2t - et 比較係數得:- A = 1 → A = - 1 2B = 1 → B = ( 1/2 ) → yp = - te2t + ( 1/2 )et = - x2 ln│x│+ ( x/2 ) ~ 特解 ( particular solution ) 通解 ( general solution ):y = yh + yp → y = c1x2 + c2x3 - x2 ln│x│+ ( x/2 ) #* 希望以上回答能幫助您。
2006-10-22 23:56:35 補充:
抱歉,是 2B = - 1,所以 B = ( - 1/2 ),差一個負號,抱歉囉!
2006-10-22 19:54:52 · answer #1 · answered by 龍昊 7 · 0⤊ 0⤋