1.y'+(x+1)y=e^(x^2)y^3,y(0)=0.5
2.y'sin2y+xcos2y=2x
3.2yy'+y^2sinx=sinx,y(0)=√2
4.y'+x^2y=[e^(-x^3)sinhx]/(3y^2)
就這四題請高手們幫我看看好嗎?
2006-10-20 11:56:06 · 2 個解答 · 發問者 Anonymous in 教育與參考 ➔ 考試
using a method of this section or separating variables,find the general solution.if an initial condition is given,find also the particular solution and sketch or graph it.
2006-10-21 15:20:47 · update #1
確定這些題目都是正合( exact )的題目嗎?
2006-10-22 00:35:31 補充:
using a method of this section,意思是使用這一節的方法,能不能跟我講是哪一節、名稱是什麼?因為有的題目用紙筆算不出來,是不是要用數值分析、數值方法?
2006-10-22 12:25:26 補充:
1. y' + ( x + 1 ) y = exp( x2 ) y3 , y(0) = 0.5sol: 原式為 Bernoulli's ode,移項得:y - 3 + ( x + 1 ) y - 2 = exp( x2 ) 令 u = y - 2 → u' = - 2y - 3 y' → y - 3 y' = - ( u'/2 ) → - ( u'/2 ) + ( x + 1 ) u = exp( x2 ) → u' - 2( x + 1 ) u = - 2 exp( x2 ) ~ 一階線性 o.d.e. 積分因子:I(x) = e∫- 2( x + 1 )dx = exp( - x2 - 2x ) u = exp( x2 + 2x )[ - 2∫exp( - x2 - 2x ) exp( x2 )dx + c ] = exp( x2 + 2x )[ - 2∫exp( - 2x )dx + c ] = exp( x2 + 2x )[ exp( - 2x ) + c ] = exp( x2 ) + c exp( x2 + 2x ) → u = exp( x2 ) + c exp( x2 + 2x ) → y - 2 = exp( x2 ) + c exp( x2 + 2x ) y(0) = 0.5 → x = 0 , y = 0.5 → 4 = e0 + ce0 → 4 = 1 + c → c = 3 → y - 2 = exp( x2 ) + 3 exp( x2 + 2x ) #*2. y' sin 2y + x cos 2y = 2xsol: ( dy/dx )( sin 2y ) + x cos 2y = 2x → ( dy/dx )( sin 2y ) = x( 2 - cos 2y ) → [ ( sin 2y )/( 2 - cos 2y ) ]dy = xdx →∫[ ( sin 2y )/( 2 - cos 2y ) ]dy =∫xdx + c1 → ( 1/2 )∫[ 1/( 2 - cos 2y ) ]d( 2 - cos 2y ) =∫xdx + c1 → ( 1/2 ) ln│2 - cos 2y│= ( x2/2 ) + c1 → ln│2 - cos 2y│= x2 + 2c1 令 2c1 = c → ln│2 - cos 2y│= x2 + c #*3. 2yy' + y2sin x = sin x , y(0) = √2sol: 原式為 Bernoulli's o.d.e. 令 u = y2 → u' = 2yy' → u' + ( sin x ) u = sin x ~ 一階線性 o.d.e. 積分因子:I(x) = e∫sin xdx = e - cos x u = e cos x (∫e - cos x sin x dx + c ) = e cos x [ -∫e - cos x d( cos x ) + c ] = e cos x [ e - cos x + c ] = 1 + ce cos x → u = 1 + ce cos x → y2 = 1 + ce cos x y(0) = √2 → x = 0 , y = √2 → 2 = 1 + ce1 → c = ( 2 - 1 )/e1 = e - 1 → y2 = 1 + e - 1e cos x #*4. y' + x2y = [ exp( - x3 )( sinh x ) ]/3y2sol: 原式為 Bernoulli's o.d.e.,移項得:y - 2 y' + x2y - 1 = [ exp( - x3 )( sinh x ) ]/3 令 u = y - 1 → u' = - y - 2 y' → - u' + x2u = exp( - x3 )( sinh x )/3 → u' - x2u = - exp( - x3 )( sinh x )/3 ~ 一階線性 o.d.e. 積分因子:I(x) = exp(∫- x2dx ) = exp( - x3/3 ) u = exp( x3/3 ) [ - ( 1/3 )∫exp( - x3/3 )exp( - x3 )( sinh x )dx + c ] = exp( x3/3 ) [ - ( 1/3 )∫exp( - 4x3/3 )( sinh x )dx + c ] 卡在這個積分∫exp( - 4x3/3 )( sinh x )dx 算不出來,抱歉囉!* 希望以上回答能幫助您。
2006-10-22 08:25:26 · answer #1 · answered by 龍昊 7 · 0⤊ 0⤋
using a method of this section or separating variables,find the general solution.if an initial condition is given,find also the particular solution and sketch or graph it.
2006-10-21 15:20:40 · answer #2 · answered by Anonymous · 0⤊ 0⤋