Pode confiar...
A Derivada de : f(x)= x elevado a x ao cubo é:
f ' (x) = x^(x^3)*(3*x^2*ln(x)+x^2)
2006-09-15 07:51:35
·
answer #1
·
answered by Eurico 4
·
0⤊
0⤋
sem tempo
2006-09-18 11:26:44
·
answer #2
·
answered by leandro k 2
·
0⤊
0⤋
tome o logaritimo antes de fazer a derivada
2006-09-14 23:32:36
·
answer #3
·
answered by djs_boy 3
·
0⤊
0⤋
2
2006-09-14 23:31:45
·
answer #4
·
answered by Enzo- 7
·
0⤊
0⤋
Eh f'(x) = 3 * x^2
2006-09-15 04:40:37
·
answer #5
·
answered by Steiner 7
·
0⤊
1⤋
Faça y=x^x^3 então aplique ln de ambos os lados. Fica: lny=x^3lnx.
Derive de ambos os lados
1/y(dy/dx)=3x^2.lnx+x^3.1/x. Então, dy/dx=(3x^2.lnx+x^2).y.
Logo, dy/dx=(3x^2lnx+x^2).x^x^3
2006-09-15 01:26:47
·
answer #6
·
answered by elysabet 5
·
0⤊
1⤋
Chame o X ao cubo de U, após isso derive U e vc encontrará 3X², agora é só derivar X e U e vc encontrará UXU-1 e logo após vc substitua U e vc encontrará X3X3Xelevado a 2 - 1.
2006-09-14 23:57:03
·
answer #7
·
answered by Hidy 2
·
0⤊
1⤋