English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
所有分類

請問各位一下我有個問題:三角形的比例問題
不好意思麻煩大家由於本人不太會使用電腦所以一些數學符號和圖形無法貼上
請各位多多包涵
1:內分點性質與應用
設A(3.8).B(負5.2).C(7.5)為三角形A.B.C.的3頂點,且角A的角平分線AD交於BC於D點,求D點坐標.
以上是題目那麼之中有提示:在三角形A.B.C中AD為角a的角平分線
則:AB:AC等於BD:CD.
那我的問題是為什麼:AB:AC等於BD:CD那是否可用在任意角度的三角形.
不好意思我須要圖解和詳細的解釋.  謝謝大家

2006-09-13 19:22:45 · 4 個解答 · 發問者 Anonymous in 科學 其他:科學

4 個解答


圖片參考:http://homelf.kimo.com.tw/cloudyma/2ofqid1106091313902.JPG
消去相同項,即得AB/AC=BD/CD,即AB:AC=BD:CD你原先的題目,AB=10,AC=5,AB:AC=2:1因此BD:CD=2:1D點座標=([2*7+1*(-5)]/(2+1) , [2*5+1*2]/(2+1))=(9/3 , 12/3)=(3,4)

2006-09-14 21:17:28 補充:
角平分線定理適用於任意三角形。

2006-09-14 17:15:29 · answer #1 · answered by ? 7 · 0 0

謝謝大家  指導與講解

2006-09-15 18:10:00 · answer #2 · answered by Anonymous · 0 0

在三角形A.B.C中AD為角a的角平分線,則:AB:AC等於BD:CD.那我的問題是為什麼:AB:AC等於BD:CD那是否可用在任意角度的三角形.答案:是的. 麻煩您拿筆劃一下.設AB為長邊,從D向AB作一直線交AB於E,使角ADE=角ACD,則三角形ADE與ACD相似,故AC:CD=AD:DE [1]角AED=角ADC,故角BED=角BDA,三角形BED與BDA相似,故AB:BD=AD:DE [2][1]=>[2] AB:BD=AC:CD,即 AB:AC=BD:CD,適用於任何三角形.上題AB=((3-(-5))2+(8-2)2)0.5=10,AC=((3-7)2+(8-5)2)0.5=5,AB:AC=10:5=2:1,故D的座標為(-5-(-5-7)*2/3,2-(2-5)*2/3)=(3,4)D(3,4)

2006-09-17 04:07:32 補充:
這是幾何解法,不需要三角函數,圖我貼不出來,所以麻煩你畫一下.

2006-09-14 07:54:51 · answer #3 · answered by ? 7 · 0 0

很巧  我ㄝ剛好跟你一樣由於我ㄝ不太會使用電腦所以一些數學符號和圖形無法貼上請各位多多包涵那我的問題是為什麼:AB:AC等於BD:CD那是否可用在任意角度的三角形.答案市可以的證明:以三腳形 abd 跟據正弦定理bd:sin(bad)=ab:sin(adb)改寫為 bd: ab  =sin(bad):sin(adb)以三腳形 acd 跟據正弦定理cd:sin(cad)=ac:sin(adc)改寫為 cd: ac  =sin(cad):sin(adc)=sin(cad):sin(180-adb)=sin(cad):sin(adb) =sin(bad):sin(adb)   = bd:ab註 () 為角度

2006-09-14 04:26:16 · answer #4 · answered by 1111 7 · 0 0

fedest.com, questions and answers