(1+X^2)y\"-2xy\'+2y=0
求一般解 謝謝...........
2006-08-24 20:19:05 · 4 個解答 · 發問者 klose red 1 in 教育與參考 ➔ 考試
http://tw.knowledge.yahoo.com/question/?qid=1106082311054
2006-08-26 14:01:54 · update #1
基本觀念: 以下公式是由 method of reduction of order 推導而來,建議上考場前記起來,以節省中間繁複計算的時間;若由題目可觀察到或給定一個解 y1,且方程式之型式如下:y'' + P(x)y' + Q(x)y = 0 則求解另一解 y2 之方法為:U = ( 1/y12 )exp[∫- P(x)dx ]y2 = y1∫Udx 有了以上的觀念,我們就能來解算這著題目。*Problem:( 1 + x2 )y'' - 2xy' + 2y = 0 , find general solution of y = ?sol: 由原式得:y'' - [ 2x/( 1 + x2 ) ] y' + [ 2/( 1 + x2 ) ] y = 0 → P(x) = - 2x/( 1 + x2 ) Q(x) = 2/( 1 + x2 ) 由觀察可知 y1 = x 為其中一解。 U = ( 1/y12 )exp[∫- P(x)dx ] = ( 1/x2 )exp{∫[ 2x/( 1 + x2 ) ]dx } = ( 1/x2 )exp{∫[ 1/( 1 + x2 ) ]d( 1 + x2 ) } = ( 1/x2 )exp[ ln│1 + x2 │] = ( 1/x2 )( 1 + x2 ) = 1 + ( 1/x2 ) y2 = y1∫Udx = x∫[ 1 + ( 1/x2 ) ]dx = x [ x - ( 1/x ) ] = x2 - 1 general solution:y = y1 + y2 → y = x2 + x - 1 #* 以上過程應該都很詳細了,若還有疑問請再提出;希望以上回答能幫助您。
2006-08-26 13:35:26 · answer #1 · answered by 龍昊 7 · 0⤊ 0⤋
設二階線性ODE為
y''+P(x)y'+Q(x)y=R(x)
P(x)=-2x/(1+x^2)
Q(x)=2/(1+x^2)
由判別式
P(x)+xQ(x)=-2x/(1+x^2)+2x/(1+x^2)=0
知x為原式之齊性解
設
y=xv,
則
y'=xv'+v,y''=xv''+2v'
代回原式,得
(1+x^2)xv''+v'=0
lnv'=∫-1/x(1+x^2) dx
= ∫[2x/(1+x^2)-2/x]dx
= ln(1+x^2)-2lnx+c1
v' = c1(1+1/x^2)
v = c1∫(1+1/x^2)dx
= c1(x-1/x)+c2
通解為
y= xv
= c1(x^2-1)+c2x ((c1,c2為常數
2006-08-25 08:32:40 · answer #2 · answered by 藍色之外 2 · 0⤊ 0⤋
如果題目無誤的話
這種變係數的二階微分方程
好像解不出來...
(我自己應該把能試的都試過了)
2006-08-25 05:31:00 · answer #3 · answered by ? 3 · 0⤊ 0⤋
(1+X平方)Y-2XY+2Y=0
Y+XY平方-2XY+2Y=0
答案~> XY^2-2XY+3Y=0
PS.我是用高中算法~.~
2006-08-25 00:41:11 · answer #4 · answered by ? 1 · 0⤊ 0⤋