A bottle at 21.0°C contains an ideal gas at a pressure of 126.4×10^3 Pa.
The rubber stopper closing the bottle is removed. The gas expands adiaabtically against P(external)=101.9×10^3 Pa. and some gas is expelled from the bottle in the process.When P=P(external), the gas remaining in the bottle slowly warms up to 21.0°C.問題(1)What is the final pressure in the bottle for a monatomic gas, for which Cv=3/2R?問題(2)What is the final pressure in the bottle for a diatomic gas, for which Cv=5/2R?
翻譯:
bottle 瓶子
contains 包括
rubber 橡皮
removed 隔開
against 可逆
expands 擴張
adiaabtically 絕熱
external 外界
remaining 剩餘
monatomic 單原子
diatomic 雙原子
有答案!!!!不知道算法
(1)110.5×10^3Pa
(2)107.8×10^3Pa
2006-04-03 12:27:47 · 2 個解答 · 發問者 jj5110 1 in 社會與文化 ➔ 語言
版主:算出來了, 算法如下:1. 求 Cp/Cv值(用符號a來代表). 已知 Cp - Cv = R, 而單原子和雙原子的 Cv 值都已提供. 所以將 Cv 值代進以上公式即可求出:單原子的 a 值為 5/3雙原子的 a 值為 7/52. 絕熱擴張中溫度和壓力的關係為:(T2/T1) = (P2/P1)((a-1)/a); T為絕對溫度(K)已知 T1 = 21+273 = 294K, P1 = 126.4kPa, P2 = 101.9kPa, 求 T2將以上的 a 值代進可求出:單原子的 T2 為 269.7K雙原子的 T2 為 276.4K3. 最後, 系統是以理想氣體的狀態來進行擴張的, 所以這時溫度和壓力的關係為:(T2/T1) = (P2/P1)從上個步驟已得知單原子和雙原子各別的 T2, 而 T1 = 294K (從 T2 加溫至 T1), P2 = 101.9kPa, 所以擴張之後各系統最後的壓力為:單原子的壓力: 111.07 x 103 Pa雙原子的壓力: 108.37 x 103 Pa這裡所算出來的答案與提供答案的微小差距可能是由於四捨五入的緣故.如果還有什麼不明白的請再補充^^
2006-04-03 18:30:35 · answer #1 · answered by ? 7 · 0⤊ 0⤋
adiaabtically means deltaQ = 0
humm..... does that ring the bell?
2006-04-03 21:45:52 補充:
http://online.cctt.org/physicslab/content/PhyAPB/lessonnotes/thermodynamics/lessonthermodynamics.asp#expansion
2006-04-03 17:45:27 · answer #2 · answered by ROC 3 · 0⤊ 0⤋