English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
所有分類

1.solve the initial value problem x dy/dx + y = e^x , y(1)=2
2.determine whether the differential equation 2xydx+(x^2-1)dy=0 is exact solve it
3.find the general solution of the equation y\'\'\'-y\'\'-y\'+y=0
4.solve the cauchy-euler equation x^2y\'\'-xy\'+10y=0
5.use the method of undetermined coefficients to solve the equation y\'\'+y\'-6y=2x
6.use u=y\' to solve yy\'\'=(y\')^2

2006-01-18 04:29:35 · 2 個解答 · 發問者 ? 1 in 教育與參考 考試

2 個解答

1.solve the initial value problem x( dy/dx ) + y = ex , y(1) = 2sol:  原式化為:( dy/dx ) + ( y/x ) = ex/x ~ 一階線性ODE  積分因子:I(x) = e∫( 1/x )dx = eln│x│= x  y = ( 1/x )[∫( x‧ex/x )dx + c ]     = ( 1/x )[ ex + c ] = ex/x + c/x  代入邊界條件 x = 1 , y = 2  → e1 + c = 2 → c = 2 - e1  → y = ex/x + ( 2 - e1 )/x #2.determine whether the differential equation 2xydx + ( x2 - 1 )dy=0 is exact solve itsol:  令 M( x , y ) = 2xy     N( x , y ) = x2 - 1  ∂M/∂y = 2x , ∂N/∂x = 2x  ∂M/∂y = ∂N/∂x → exact  若 Exact,則必有一解,其型式為:F( x , y ) = C  F =∫Mdx + c( y )     =∫2xydx + c( y ) = x2y + c(y)  ∂F/∂y = N  → x2 + c'( y ) = x2 - 1  → c'( y ) = - 1 → c( y ) = - y  所以解為:x2y - y = C #3. find the general solution of the equation y''' - y'' - y' + y = 0sol:  特徵方程式:r3 - r2 - r + 1 = 0  → ( r - 1 )( r - 1 )( r + 1 ) = 0 → r = 1 , 1 , - 1  → y = ( c1 + c2x )ex + c3e-x #4. solve the cauchy - euler equation x2y'' - xy' + 10y = 0sol:  令 y = xm 代入原式得:m( m - 1 ) - m + 10 = 0  → m2 - 2m + 10 = 0 → m = - 1 ± 3i  → y = x-1[ c1cos 3ln│x│+ c2sin 3ln│x│] #5.use the method of undetermined coefficients to solve the equation y'' + y' - 6y = 2xsol:  特徵方程式:r2 + r - 6 = 0  → ( r - 2 )( r + 3 ) = 0 → r = 2 , - 3  齊次解:yh = c1e2x + c2e-3x  令 yp = Ax + B  → yp' = A , yp'' = 0  yp'' + yp' - 6yp = 2x  → A - Ax - B = 2x  比較係數得:- A = 2 → A = - 1/2        A - B = 0 → B = - 1/2  特解:yp = - x/2 - 1/2  y = yh + yp  → y = c1e2x + c2e-3x - ( x/2 ) - ( 1/2 ) #6.use u = y' to solve yy'' = ( y' )2sol:  令 u = y' → u' = yy''  原式可寫成:u' = u2 ~ 變數可分離型ODE  →∫( 1/u2 )du =∫dx + c1  → - 1/u = x + c1  → u = - 1/( x + c1 )  → y' = - 1/( x + c1 ) ~ 變數可分離型ODE  →∫dy =∫[ - 1/( x + c1 ) ]dx + c2  → y = - ln│x + c1│+ c2 #  希望以上解答的過程能幫這您。

2006-01-18 09:21:46 · answer #1 · answered by 龍昊 7 · 0 0

ㄟˇ~~~~我覺得阿~~~
這些題目看起來都不難~~如果自己不去做做看就只是要找人來解題目的話說不太過去~~~
如果你是有其他原因才來問這些題目的解法的話,那就當我多嘴跟你說聲抱歉囉~~~

2006-01-19 08:38:51 · answer #2 · answered by 3 · 0 0

fedest.com, questions and answers