1. x^2 y''-xy'+y=x ln x
2. 2(3x+1)^2 y''+21(3x+1)y'+18y=0
要詳細計算過程,謝謝
2006-01-14 19:08:19 · 3 個解答 · 發問者 龍斬澐 6 in 教育與參考 ➔ 考試
1. x2y'' - xy' + y = x ln│x│sol: 令 x = et → t = ln│x│ y' = dy/dx = ( dy/dt )( dt/dx ) = ( 1/x )( dy/dt ) y'' = d2y/dx2 = ( d/dx )[ ( 1/x )( dy/dt ) ] = ( 1/x2 )( d2y/dt2 ) - ( 1/x2 )( dy/dt ) 將 y'、y''、x = et 、t = ln│x│代入原 Cauchy - Euler equation 得: ( d2y/dt2 ) - 2( dy/dt ) + y = tet 特徵方程式( characteristic equation ):r2 - 2r + 1 = 0 → ( r - 1 )( r - 1 ) = 0 → r = 1 , 1 ~ 重根 yh = ( c1 + c2t )et = ( c1 + c2ln│x│)x ~ 齊性解( homogeneous solution ) 利用未定係數法( method of undetermined coefficients )求特解: 原本要令 yp = ( At + B )et,但與齊性解比較有同形項 et 與 tet,故乘上〝t2〞修正! 令 yp = t2( At + B )et = ( At3 + Bt2 )et → dyp/dt = ( 3At2 + 2Bt )et + ( At3 + Bt2 )et d2yp/dt2 = ( 6At + 2B )et + 2( 3At2 + 2Bt )et +( At3 + Bt2 )et 將 yp、dyp/dt、d2yp/dt2 代入 ( d2yp/dt2 ) - 2( dyp/dt ) + yp = tet → ( 6At + 2B )et = tet 比較係數得:A = 1/6 , B = 0 → yp = t3et/6 = x ln3│x│/6 ~ 特解( particular solution ) 通解:y = yh + yp → y = ( c1 + c2ln│x│)x + x ln3│x│/6 #2. 2( 3x + 1 )2y'' +21( 3x + 1 )y' + 18y = 0sol: 令 3x + 1 = et → t = ln│3x + 1│ y' = dy/dx = ( dy/dt )( dt/dx ) = [ 3/( 3x + 1 ) ]( dy/dt ) y'' = d2y/dx2 = ( d/dx ){ [ 3/( 3x + 1 ) ]( dy/dt ) } = [ 9/( 3x + 1 )2 ]( d2y/dt2 ) - [ 9/( 3x + 1 )2 ]( dy/dt ) 將 y'、y'' 代入原方程式得: 18( d2y/dt2 ) + 45( dy/dt ) + 18y = 0 上式化為:d2y/dt2 + ( 5/2 )( dy/dt ) + y = 0 特徵方程式( characteristic equation ):r2 + ( 5/2 )r + 1 = 0 → ( r + 1/2 )( r + 2 ) = 0 → r = - 1/2 , - 2 ~ 相異實根 y = c1e(- 1/2 )t + c2e-2t → y = c1( 3x + 1 )- 1/2 + c2( 3x + 1 )- 2 #
2006-01-15 03:08:13 · answer #1 · answered by 龍昊 7 · 0⤊ 0⤋
名稱係
科西尤拉等維線性
Legendre等維線性
2013-01-31 06:24:28 · answer #2 · answered by 八八 1 · 0⤊ 0⤋
這兩題都是等微線性ODE
1.令x = e^t , t = lnx
==> Dt(Dt-1)y - Dty + y = te^t
==> (Dt^2 - 2Dt + 1)y = te^t
==> [(Dt - 1)^2]y =te^t
==>yh = C1e^t + C2 te^t
==>yp = [ 1 / (Dt - 1)^2 ] * te^t
==>yp = e^t *[ 1 / (Dt + 1 - 1)^2 ] *t
==>yp = ( t^3 * e^t ) / 6
==> y = C1e^t + C2 te^t + ( t^3 * e^t ) / 6
換回原假設
==> y = C1x + C2 xlnx + [ (lnx)^3 * x ] / 6
第二題
令z = 3x+1
令z = e^t , t = lnz
==> 2Dt(Dt-1)y + 21Dty +18 y = 0
==> ( 2Dt^2 +19Dt +18 )y = 0
2006-01-14 20:53:18 · answer #3 · answered by lalala 2 · 0⤊ 0⤋