工程數學禮拜二要考,緊急求救,一題20點,有5題喔
x^2y''-2xy'+y=10sin(ln x)
y(1)=3 y'(1)=0
2006-01-12 18:16:54 · 1 個解答 · 發問者 Anonymous in 科學 ➔ 工程學
題目打錯,是
x^2y''-2xy'+2y=10sin(ln x)
才對
2006-01-13 07:54:23 · update #1
3. Solve x2y'' - 2xy' + 2y = 10sin ln│x│, y(1) = 3 , y'(1) = 0sol: 令 x = et → t = ln│x│ y' = dy/dx = ( dy/dt )( dt/dx ) = ( 1/x )( dy/dt ) y'' = d2y/dx2 = ( d/dx )[ ( 1/x )( dy/dt ) ] = ( 1/x2 )( d2y/dt2 ) - ( 1/x2 )( dy/dt ) 將 y'、y''、t = ln│x│代入原 Cauchy - Euler equation 得: ( d2y/dt2 ) - 3( dy/dt ) + 2y = 10sin t 特徵方程式:r2 - 3r + 2 = 0 → ( r - 1 )( r - 2 ) = 0 → r = 1 , 2 ~ 相異實根 yh = c1et + c2e2t = c1x + c2x2 ~ 齊性解 利用未定係數法求特解: 令 yp = Acos t + Bsin t → dyp/dt = - Asin t + Bcos t , d2yp/dt2 = - Acos t - Bsin t 將 dyp/dt、d2yp/dt2 代入 ( d2yp/dt2 ) - 3( dyp/dt ) + 2yp = 10sin t → ( A - 3B )cos t + ( 3A + B )sin t = 10sin t 比較係數得:( A - 3B ) = 0 , ( 3A + B ) = 10 → A = 3 , B = 1 → yp = 3cos t + sin t = 3cos ln│x│+ sin ln│x│~ 特解 通解:y = yh + yp → y = c1x + c2x2 + 3cos ln│x│+ sin ln│x│ 代入邊界條件 x = 1 , y = 3 得: c1 + c2 = 0 y' = c1 + 2c2x - ( 3sin ln│x│/x ) + ( cos ln│x│/x ) 代入邊界條件 x = 1 , y' = 0 得: c1 + 2c2 = - 1 聯立 c1、c2 解得:c1 = 1、c2 = - 1 → y = x - x2 + 3cos ln│x│+ sin ln│x│#
2006-01-13 16:31:10 補充:
這題數據實在是設計的很漂亮,我覺得是必考喔!
2006-01-13 10:52:07 · answer #1 · answered by 龍昊 7 · 0⤊ 0⤋