English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
所有分類

工數課本 ERWIN KREYSZIG
P142 的 第10 題
x^3y''' xy'-y=x^2 , y(1)=0, y''(1)=3 , y'''(1)=3
和12題 y^5 10y'' 9y=40sinhx , y(0=0 ,y'(0)=6, y''(0)=0 y'''(0)=-26

2006-01-11 18:10:45 · 2 個解答 · 發問者 SUEMI 1 in 教育與參考 考試

第八版

2006-01-11 18:24:23 · update #1

我想請問詳細的解題方法謝謝!!

2006-01-11 18:24:52 · update #2

2 個解答

1. Solve x3y''' + xy' - y = x2 , y(1) = 0 , y'(1) = 3 , y''(1) = 3sol:  令 x = et → t = ln│x│  y' = dy/dx = ( dy/dt )( dt/dx ) = ( 1/x )( dy/dt )  y'' = d2y/dx2 = ( d/dx )[ ( 1/x )( dy/dt ) ]   = ( 1/x2 )( d2y/dt2 ) - ( 1/x2 )( dy/dt )  y''' = d3y/dx3    = ( d/dx )[ ( 1/x2 )( d2y/dt2 ) - ( 1/x2 )( dy/dt ) ]    = ( 1/x3 )( d3y/dt3 ) - ( 3/x3 )( d2y/dt2 ) + ( 2/x3 )( dy/dt )  將 y'、y''' 代入原 Cauchy - Euler equation 得:  → ( d3y/dt3 ) - 3( d2y/dt2 ) + 3( dy/dt ) - y = e2t  特徵方程式:r3 - 3r2 + 3r - 1 = 0  → ( r - 1 )( r - 1 )( r - 1 ) = 0 → r = 1 , 1 , 1 ~ 三重根  yh = ( c1 + c2t + c3t2 )et    = ( c1 + c2ln│x│+ c3ln2│x│)x ~ 齊性解  用未定係數法求特解:  Let yp = Ae2t  → yp' = 2Ae2t , yp'' = 4Ae2t , yp''' = 8Ae2t  ( d3yp/dt3 ) - 3( d2yp/dt2 ) + 3( dyp/dt ) - yp = e2t  → Ae2t = e2t  比較係數得:A = 1  → yp = e2t = x2 ~ 特解  通解:y = yh + yp  → y = ( c1 + c2ln│x│+ c3ln2│x│)x + x2  代入邊界條件 x = 1 , y = 0 得:  c1 + 1 = 0 → c1 = - 1  y' = [ ( c2/x ) + 2c3ln│x│/x ]x + ( c1 + c2ln│x│+ c3ln2│x│) + 2x  代入邊界條件 x = 1 , y = 3 得:  c2 + c1 + 2 = 3 → c2 = 3 - 2 - c1 = 2  y'' = [ - c2/x2 + ( 2c3/x - 2c3ln│x│)/x2 ]x + 2( c2/x + 2c3ln│x│) + 2  代入邊界條件 x = 1 , y = 3 得:  - c2 + 2c3 + 2c2 + 2 = 3 → c3 = ( 1 - c2 )/2  = - 1/2  → y = [ - 1 + 2ln│x│- ( 1/2 )ln2│x│]x + x2 #2. Solve y'''' + 10y'' + 9y = 40sinh x , y(0) = 0 , y'(0) = 6                    y''(0) = 0 , y'''(0) = - 26sol:  這題應該是 y'''' 不是 y'''''!因為初值條件只給到 y'''(0),只夠解出 4 個未定係數,如果是 y''''' 就是五階微分方程式,會產生五個未定係數,所以題目應更改為 y'''' 才對!  特徵方程式:r4 + 10r2 + 9 = 0  → ( r2 + 1 )( r2 + 9 ) = 0 → r = ± i , ± 3i  yh = c1cos x + c2 sin x + c3cos 3x + c4sin 3x ~ 齊性解  以未定係數法求特解:  非齊性項:40sinh x = 40[ ( ex - e-x )/2 ]            = 20( ex - e-x )  故令 yp = Aex + Be-x  → yp' = Aex - Be-x , yp'' = Aex + Be-x

2006-01-12 11:47:07 · answer #1 · answered by 龍昊 7 · 0 0

你是用第幾版的課本阿!

2006-01-11 18:19:12 · answer #2 · answered by 1 · 0 0

fedest.com, questions and answers